文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有溶胀增硬特性和可编程变形的 4D 打印水凝胶支架,可用于微创植入。

4D printed hydrogel scaffold with swelling-stiffening properties and programmable deformation for minimally invasive implantation.

机构信息

Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

Center for Health Science and Engineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China.

出版信息

Nat Commun. 2024 Feb 21;15(1):1587. doi: 10.1038/s41467-024-45938-0.


DOI:10.1038/s41467-024-45938-0
PMID:38383668
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10881973/
Abstract

The power of three-dimensional printing in designing personalized scaffolds with precise dimensions and properties is well-known. However, minimally invasive implantation of complex scaffolds is still challenging. Here, we develop amphiphilic dynamic thermoset polyurethanes catering for multi-material four-dimensional printing to fabricate supportive scaffolds with body temperature-triggered shape memory and water-triggered programmable deformation. Shape memory effect enables the two-dimensional printed pattern to be fixed into temporary one-dimensional shape, facilitating transcatheter delivery. Upon implantation, the body temperature triggers shape recovery of the one-dimensional shape to its original two-dimensional pattern. After swelling, the hydrated pattern undergoes programmable morphing into the desired three-dimensional structure because of swelling mismatch. The structure exhibits unusual soft-to-stiff transition due to the water-driven microphase separation formed between hydrophilic and hydrophobic chain segments. The integration of shape memory, programmable deformability, and swelling-stiffening properties makes the developed dynamic thermoset polyurethanes promising supportive void-filling scaffold materials for minimally invasive implantation.

摘要

三维打印在设计具有精确尺寸和特性的个性化支架方面的强大功能是众所周知的。然而,微创植入复杂支架仍然具有挑战性。在这里,我们开发了两亲性动态热固性聚氨酯,以适应多材料的四维打印,从而制造出具有体温触发形状记忆和水触发可编程变形的支撑性支架。形状记忆效应使二维打印图案固定为临时的一维形状,便于经导管输送。植入后,体温触发一维形状恢复到原来的二维形状。在膨胀后,由于膨胀失配,水合后的图案可编程地变形为所需的三维结构。由于亲水性和疏水性链段之间形成的水驱动微相分离,该结构表现出异常的软-硬转变。形状记忆、可编程变形和溶胀增韧性能的结合,使得开发的动态热固性聚氨酯有望成为微创植入用的有前途的支撑性空洞填充支架材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20fd/10881973/61b41de9ae60/41467_2024_45938_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20fd/10881973/0ad2232844a9/41467_2024_45938_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20fd/10881973/6abe48d3c842/41467_2024_45938_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20fd/10881973/6eb90ae149fa/41467_2024_45938_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20fd/10881973/6cc1067f1331/41467_2024_45938_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20fd/10881973/f9f265f4e368/41467_2024_45938_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20fd/10881973/e3ae149197b5/41467_2024_45938_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20fd/10881973/61b41de9ae60/41467_2024_45938_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20fd/10881973/0ad2232844a9/41467_2024_45938_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20fd/10881973/6abe48d3c842/41467_2024_45938_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20fd/10881973/6eb90ae149fa/41467_2024_45938_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20fd/10881973/6cc1067f1331/41467_2024_45938_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20fd/10881973/f9f265f4e368/41467_2024_45938_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20fd/10881973/e3ae149197b5/41467_2024_45938_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20fd/10881973/61b41de9ae60/41467_2024_45938_Fig7_HTML.jpg

相似文献

[1]
4D printed hydrogel scaffold with swelling-stiffening properties and programmable deformation for minimally invasive implantation.

Nat Commun. 2024-2-21

[2]
Programmable 4D Printing of Photoactive Shape Memory Composite Structures.

ACS Appl Mater Interfaces. 2022-9-21

[3]
Water-Triggered Stiffening of Shape-Memory Polyurethanes Composed of Hard Backbone Dangling PEG Soft Segments.

Adv Mater. 2022-11

[4]
A 4D printed nanoengineered super bioactive hydrogel scaffold with programmable deformation for potential bifurcated vascular channel construction.

J Mater Chem B. 2024-8-7

[5]
Engineered Shape-Morphing Transitions in Hydrogels Through Suspension Bath Printing of Temperature-Responsive Granular Hydrogel Inks.

Adv Mater. 2024-11

[6]
Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks.

Biofabrication. 2019-9-13

[7]
4D Printing of Body Temperature-Responsive Hydrogels Based on Poly(acrylic acid) with Shape-Memory and Self-Healing Abilities.

ACS Appl Bio Mater. 2023-2-20

[8]
Digital light 4D printing of bioresorbable shape memory elastomers for personalized biomedical implantation.

Acta Biomater. 2024-3-15

[9]
4D Printing of Biocompatible Scaffolds via Photo-crosslinking from Shape Memory Copolyesters.

ACS Appl Mater Interfaces. 2023-9-20

[10]
Smart implants: 4D-printed shape-morphing scaffolds for medical implantation.

Int J Bioprint. 2023-5-30

引用本文的文献

[1]
Shape memory hydrogels in tissue engineering: Recent advances and challenges.

Bioact Mater. 2025-8-19

[2]
Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration.

Nanomaterials (Basel). 2025-8-5

[3]
Lithography-based 3D printing of hydrogels.

Nat Rev Bioeng. 2025-2

[4]
Two-photon polymerization based 4D printing of poly(N-isopropylacrylamide) hydrogel microarchitectures for reversible shape morphing.

Sci Rep. 2025-7-1

[5]
Decellularized Extracellular Matrices for Skin Wound Treatment.

Materials (Basel). 2025-6-12

[6]
Hydrogel-Based Continuum Soft Robots.

Gels. 2025-3-27

[7]
Diverse reactivity of maleimides in polymer science and beyond.

Polym Int. 2025-4

[8]
NIR-programmable 3D-printed shape-memory scaffold with dual-thermal responsiveness for precision bone regeneration and bone tumor management.

J Nanobiotechnology. 2025-4-17

[9]
Cellular mechanical memory: a potential tool for mesenchymal stem cell-based therapy.

Stem Cell Res Ther. 2025-3-31

[10]
3D printed scaffolds with multistage osteogenic activity for bone defect repair.

Regen Biomater. 2025-3-10

本文引用的文献

[1]
4D Printed Programmable Shape-Morphing Hydrogels as Intraoperative Self-Folding Nerve Conduits for Sutureless Neurorrhaphy.

Adv Healthc Mater. 2023-9

[2]
Research Progress of Shape Memory Polymer and 4D Printing in Biomedical Application.

Adv Healthc Mater. 2023-6

[3]
Water-Triggered Stiffening of Shape-Memory Polyurethanes Composed of Hard Backbone Dangling PEG Soft Segments.

Adv Mater. 2022-11

[4]
Jammed Micro-Flake Hydrogel for Four-Dimensional Living Cell Bioprinting.

Adv Mater. 2022-4

[5]
An unparalleled H-bonding and ion-bonding crosslinked waterborne polyurethane with super toughness and unprecedented fracture energy.

Mater Horiz. 2021-10-4

[6]
3D printing of lubricative stiff supramolecular polymer hydrogels for meniscus replacement.

Biomater Sci. 2021-7-27

[7]
4D polycarbonates via stereolithography as scaffolds for soft tissue repair.

Nat Commun. 2021-7-5

[8]
An Innovative Solvent-Responsive Coiling-Expanding Stent.

Adv Mater. 2021-8

[9]
Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels.

Small. 2020-9

[10]
Noninvasive in vivo 3D bioprinting.

Sci Adv. 2020-6-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索