Suppr超能文献

一种针对骨关节炎患者的可解释性膝关节置换风险评估系统。

An interpretable knee replacement risk assessment system for osteoarthritis patients.

作者信息

Li H H T, Chan L C, Chan P K, Wen C

机构信息

Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong.

Department of Prosthetics and Orthotics, Tuen Mun Hospital, Hong Kong.

出版信息

Osteoarthr Cartil Open. 2024 Feb 16;6(2):100440. doi: 10.1016/j.ocarto.2024.100440. eCollection 2024 Jun.

Abstract

OBJECTIVE

Knee osteoarthritis (OA) is a complex disease with heterogeneous representations. Although it is modifiable to prevention and early treatment, there still lacks a reliable and accurate prognostic tool. Hence, we aim to develop a quantitative and self-administrable knee replacement (KR) risk stratification system for knee osteoarthritis (KOA) patients with clinical features.

METHOD

A total of 14 baseline features were extracted from 9592 cases in the Osteoarthritis Initiative (OAI) cohort. A survival model was constructed using the Random Survival Forests algorithm. The prediction performance was evaluated with the concordance index (C-index) and average receiver operating characteristic curve (AUC). A three-class KR risk stratification system was built to differentiate three distinct KR-free survival groups. Thereafter, Shapley Additive Explanations (SHAP) was introduced for model explanation.

RESULTS

KR incidence was accurately predicted by the model with a C-index of 0.770 (±0.0215) and an average AUC of 0.807 (±0.0181) with 14 clinical features. Three distinct survival groups were observed from the ten-point KR risk stratification system with a four-year KR rate of 0.79%, 5.78%, and 16.2% from the low, medium, and high-risk groups respectively. KR is mainly caused by pain medication use, age, surgery history, diabetes, and a high body mass index, as revealed by SHAP.

CONCLUSION

A self-administrable and interpretable KR survival model was developed, underscoring a KR risk scoring system to stratify KOA patients. It will encourage regular self-assessments within the community and facilitate personalised healthcare for both primary and secondary prevention of KOA.

摘要

目的

膝关节骨关节炎(OA)是一种具有异质性表现的复杂疾病。尽管其可通过预防和早期治疗得到改善,但仍缺乏可靠且准确的预后工具。因此,我们旨在为具有临床特征的膝关节骨关节炎(KOA)患者开发一种定量且可自我管理的膝关节置换(KR)风险分层系统。

方法

从骨关节炎倡议(OAI)队列中的9592例病例中提取了总共14项基线特征。使用随机生存森林算法构建了一个生存模型。通过一致性指数(C指数)和平均受试者工作特征曲线(AUC)评估预测性能。构建了一个三级KR风险分层系统,以区分三个不同的无KR生存组。此后,引入了夏普利值附加解释(SHAP)进行模型解释。

结果

该模型通过14项临床特征准确预测了KR发生率,C指数为0.770(±0.0215),平均AUC为0.807(±0.0181)。从十点KR风险分层系统中观察到三个不同的生存组,低、中、高风险组的四年KR发生率分别为0.79%、5.78%和16.2%。SHAP分析显示,KR主要由使用止痛药物、年龄、手术史、糖尿病和高体重指数引起。

结论

开发了一种可自我管理且可解释的KR生存模型,强调了一种用于对KOA患者进行分层的KR风险评分系统。这将鼓励社区内进行定期自我评估,并促进KOA一级和二级预防的个性化医疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5306/10878788/db601f653acf/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验