From the Department of Interventional Diagnosis and Treatment (H.Z., K.H., C.Z., X.M.) and Department of Radiology (H.Z., L.Z., Y.Y., K.H.), Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing 100020, China; and Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China (H.W.).
Radiol Cardiothorac Imaging. 2024 Feb;6(1):e230323. doi: 10.1148/ryct.230323.
Purpose To develop a model integrating radiomics features from cardiac MR cine images with clinical and standard cardiac MRI predictors to identify patients with hypertrophic cardiomyopathy (HCM) at high risk for heart failure (HF). Materials and Methods In this retrospective study, 516 patients with HCM (median age, 51 years [IQR: 40-62]; 367 [71.1%] men) who underwent cardiac MRI from January 2015 to June 2021 were divided into training and validation sets (7:3 ratio). Radiomics features were extracted from cardiac cine images, and radiomics scores were calculated based on reproducible features using the least absolute shrinkage and selection operator Cox regression. Radiomics scores and clinical and standard cardiac MRI predictors that were significantly associated with HF events in univariable Cox regression analysis were incorporated into a multivariable analysis to construct a combined prediction model. Model performance was validated using time-dependent area under the receiver operating characteristic curve (AUC), and the optimal cutoff value of the combined model was determined for patient risk stratification. Results The radiomics score was the strongest predictor for HF events in both univariable (hazard ratio, 10.37; < .001) and multivariable (hazard ratio, 10.25; < .001) analyses. The combined model yielded the highest 1- and 3-year AUCs of 0.81 and 0.80, respectively, in the training set and 0.82 and 0.77 in the validation set. Patients stratified as high risk had more than sixfold increased risk of HF events compared with patients at low risk. Conclusion The combined model with radiomics features and clinical and standard cardiac MRI parameters accurately identified patients with HCM at high risk for HF. Cardiomyopathies, Outcomes Analysis, Cardiovascular MRI, Hypertrophic Cardiomyopathy, Radiomics, Heart Failure . © RSNA, 2024.
目的 开发一种模型,将心脏磁共振电影图像的放射组学特征与临床和标准心脏 MRI 预测因子相结合,以识别肥厚型心肌病 (HCM) 患者中心力衰竭 (HF) 风险较高的患者。
材料与方法 在这项回顾性研究中,将 2015 年 1 月至 2021 年 6 月接受心脏 MRI 的 516 例 HCM 患者(中位年龄,51 岁 [IQR:40-62];367 例 [71.1%] 为男性)分为训练集和验证集(比例为 7:3)。从心脏电影图像中提取放射组学特征,并使用最小绝对收缩和选择算子 Cox 回归计算基于可重复特征的放射组学评分。在单变量 Cox 回归分析中,与 HF 事件显著相关的放射组学评分和临床及标准心脏 MRI 预测因子被纳入多变量分析,以构建联合预测模型。使用时间依赖性受试者工作特征曲线下面积(AUC)验证模型性能,并确定联合模型的最佳截断值用于患者风险分层。
结果 在单变量(危险比,10.37;<.001)和多变量(危险比,10.25;<.001)分析中,放射组学评分均为 HF 事件最强的预测因子。在训练集中,联合模型的 1 年和 3 年 AUC 最高,分别为 0.81 和 0.80,在验证集中,1 年和 3 年 AUC 最高,分别为 0.82 和 0.77。与低危患者相比,高危患者 HF 事件的风险增加了 6 倍以上。
结论 放射组学特征与临床和标准心脏 MRI 参数相结合的联合模型可准确识别 HF 风险较高的 HCM 患者。