Frome E L, Checkoway H
Am J Epidemiol. 1985 Feb;121(2):309-23. doi: 10.1093/oxfordjournals.aje.a114001.
Summarizing relative risk estimates across strata of a covariate is commonly done in comparative epidemiologic studies of incidence or mortality. Conventional Mantel-Haenszel and rate standardization techniques used for this purpose are strictly suitable only when there is no interaction between relative risk and the covariate, and tests for interaction typically are limited to examination for departures from linearity. Poisson regression modeling offers an alternative technique which can be used for summarizing relative risk and for evaluating complex interactions with covariates. A more general application of Poisson regression is its utility in modeling disease rates according to postulated etiologic mechanisms of exposures or according to disease expression characteristics in the population. The applications of Poisson regression analysis to problems of summarizing relative risk and disease rate modeling are illustrated with examples of cancer incidence and mortality data, including an example of a nonlinear model predicted by the multistage theory of carcinogenesis.
在发病率或死亡率的比较流行病学研究中,通常会对协变量各分层的相对风险估计值进行汇总。用于此目的的传统Mantel-Haenszel法和率标准化技术仅在相对风险与协变量之间不存在交互作用时才严格适用,并且交互作用检验通常仅限于检查是否偏离线性关系。泊松回归建模提供了一种替代技术,可用于汇总相对风险并评估与协变量的复杂交互作用。泊松回归更广泛的应用在于,它可根据假定的暴露病因机制或根据人群中的疾病表达特征对疾病率进行建模。通过癌症发病率和死亡率数据的示例,说明了泊松回归分析在汇总相对风险和疾病率建模问题中的应用,其中包括一个由癌症发生多阶段理论预测的非线性模型的示例。