Abushattal Ahmad A, Loureiro Antonio García, Boukortt Nour El I
Centro Singular de Investigación en Tecnoloxías de Información (CiTIUS), Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
Department of Physics, Al-Hussein Bin Talal University, P.O. Box 20, Ma'an 71111, Jordan.
Micromachines (Basel). 2024 Jan 29;15(2):204. doi: 10.3390/mi15020204.
This paper examines advances in ultra-high concentration photovoltaics (UHCPV), focusing specifically on vertical multijunction (VMJ) solar cells. The use of gallium arsenide (GaAs) in these cells increases their efficiency in a range of applications, including terrestrial and space settings. Several multijunction structures are designed to maximize conversion efficiency, including a vertical tunnel junction, which minimizes resistive losses at high concentration levels compared with standard designs. Therefore, careful optimization of interconnect layers in terms of thickness and doping concentration is needed. Homo-multijunction GaAs solar cells have been simulated and analyzed by using ATLAS Silvaco 5.36 R, a sophisticated technology computer-aided design (TCAD) tool aimed to ensure the reliability of simulation by targeting a high conversion efficiency and a good fill factor for our proposed structure model. Several design parameters, such as the dimensional cell structure, doping density, and sun concentrations, have been analyzed to improve device performance under direct air mass conditions AM1.5D. The optimized conversion efficiency of 30.2% has been achieved with investigated GaAs solar cell configuration at maximum concentration levels.
本文探讨了超高浓度光伏(UHCPV)的进展,特别关注垂直多结(VMJ)太阳能电池。在这些电池中使用砷化镓(GaAs)可提高其在一系列应用中的效率,包括地面和太空环境。设计了几种多结结构以最大化转换效率,其中包括垂直隧道结,与标准设计相比,它在高浓度水平下可将电阻损耗降至最低。因此,需要在互连层的厚度和掺杂浓度方面进行仔细优化。通过使用ATLAS Silvaco 5.36 R对同质多结GaAs太阳能电池进行了模拟和分析,这是一种先进的技术计算机辅助设计(TCAD)工具,旨在通过为我们提出的结构模型设定高转换效率和良好的填充因子来确保模拟的可靠性。分析了几个设计参数,如电池尺寸结构、掺杂密度和太阳聚光率,以改善在直接空气质量条件AM1.5D下的器件性能。在所研究的GaAs太阳能电池配置下,在最大聚光水平时实现了30.2%的优化转换效率。