Suppr超能文献

利用可见光诱导的可逆加成-断裂链转移(RAFT)聚合制备用于增材制造的生物相容性数字光处理树脂

Development of Biocompatible Digital Light Processing Resins for Additive Manufacturing Using Visible Light-Induced RAFT Polymerization.

作者信息

Sarabia-Vallejos Mauricio A, De la Fuente Scarleth Romero, Tapia Pamela, Cohn-Inostroza Nicolás A, Estrada Manuel, Ortiz-Puerta David, Rodríguez-Hernández Juan, González-Henríquez Carmen M

机构信息

Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 8420524, Chile.

Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile.

出版信息

Polymers (Basel). 2024 Feb 8;16(4):472. doi: 10.3390/polym16040472.

Abstract

Patients with bone diseases often experience increased bone fragility. When bone injuries exceed the body's natural healing capacity, they become significant obstacles. The global rise in the aging population and the escalating obesity pandemic are anticipated to lead to a notable increase in acute bone injuries in the coming years. Our research developed a novel DLP resin for 3D printing, utilizing poly(ethylene glycol diacrylate) (PEGDA) and various monomers through the PET-RAFT polymerization method. To enhance the performance of bone scaffolds, triply periodic minimal surfaces (TPMS) were incorporated into the printed structure, promoting porosity and pore interconnectivity without reducing the mechanical resistance of the printed piece. The gyroid TPMS structure was the one that showed the highest mechanical resistance (0.94 ± 0.117 and 1.66 ± 0.240 MPa) for both variants of resin composition. Additionally, bioactive particles were introduced to enhance the material's biocompatibility, showcasing the potential for incorporating active compounds for specific applications. The inclusion of bioceramic particles produces an increase of 13% in bioactivity signal for osteogenic differentiation (alkaline phosphatase essay) compared to that of control resins. Our findings highlight the substantial improvement in printing precision and resolution achieved by including the photoabsorber, Rose Bengal, in the synthesized resin. This enhancement allows for creating intricately detailed and accurately defined 3D-printed parts. Furthermore, the TPMS gyroid structure significantly enhances the material's mechanical resistance, while including bioactive compounds significantly boosts the polymeric resin's biocompatibility and bioactivity (osteogenic differentiation).

摘要

患有骨病的患者通常会经历骨脆性增加的情况。当骨损伤超过身体的自然愈合能力时,它们就会成为重大障碍。预计全球老龄化人口的增加和肥胖症流行的加剧将导致未来几年急性骨损伤显著增加。我们的研究通过PET-RAFT聚合方法,利用聚(乙二醇二丙烯酸酯)(PEGDA)和各种单体开发了一种用于3D打印的新型DLP树脂。为了提高骨支架的性能,将三重周期极小曲面(TPMS)纳入打印结构中,在不降低打印件机械强度的情况下促进孔隙率和孔隙连通性。对于两种树脂组合物变体,类螺旋面TPMS结构显示出最高的机械强度(0.94±0.117和1.66±0.240MPa)。此外,引入生物活性颗粒以提高材料的生物相容性,展示了为特定应用掺入活性化合物的潜力。与对照树脂相比,包含生物陶瓷颗粒使成骨分化(碱性磷酸酶测定)的生物活性信号增加了13%。我们的研究结果突出了通过在合成树脂中加入光吸收剂玫瑰红实现的打印精度和分辨率的显著提高。这种改进使得能够创建复杂详细且精确定义的3D打印部件。此外,TPMS类螺旋面结构显著提高了材料的机械强度,而包含生物活性化合物则显著提高了聚合物树脂的生物相容性和生物活性(成骨分化)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4942/10893283/2fb4bbd1f72c/polymers-16-00472-g001.jpg

相似文献

4
The design of strut/TPMS-based pore geometries in bioceramic scaffolds guiding osteogenesis and angiogenesis in bone regeneration.
Mater Today Bio. 2023 May 18;20:100667. doi: 10.1016/j.mtbio.2023.100667. eCollection 2023 Jun.
5
Numerical and experimental evaluation of TPMS Gyroid scaffolds for bone tissue engineering.
Comput Methods Biomech Biomed Engin. 2019 May;22(6):567-573. doi: 10.1080/10255842.2019.1569638. Epub 2019 Feb 18.
6
3D printed TPMS structural PLA/GO scaffold: Process parameter optimization, porous structure, mechanical and biological properties.
J Mech Behav Biomed Mater. 2023 Jun;142:105848. doi: 10.1016/j.jmbbm.2023.105848. Epub 2023 Apr 18.
7
Bioceramic scaffolds with triply periodic minimal surface architectures guide early-stage bone regeneration.
Bioact Mater. 2023 Feb 17;25:374-386. doi: 10.1016/j.bioactmat.2023.02.012. eCollection 2023 Jul.
9
Design, Stereolithographic 3D Printing, and Characterization of TPMS Scaffolds.
Materials (Basel). 2024 Jan 29;17(3):654. doi: 10.3390/ma17030654.

引用本文的文献

本文引用的文献

2
Photocontrolled RAFT Polymerization Mediated by a Supramolecular Catalyst.
ACS Macro Lett. 2017 Jun 20;6(6):625-631. doi: 10.1021/acsmacrolett.7b00343. Epub 2017 May 25.
3
Oxygen Tolerant and Room Temperature RAFT through Alkylborane Initiation.
ACS Macro Lett. 2018 Mar 20;7(3):370-375. doi: 10.1021/acsmacrolett.8b00076. Epub 2018 Mar 7.
4
Smart pH-Responsive Antimicrobial Hydrogel Scaffolds Prepared by Additive Manufacturing.
ACS Appl Bio Mater. 2018 Nov 19;1(5):1337-1347. doi: 10.1021/acsabm.8b00297. Epub 2018 Oct 22.
5
Fractal Design Boosts Extrusion-Based 3D Printing of Bone-Mimicking Radial-Gradient Scaffolds.
Research (Wash D C). 2021 Nov 23;2021:9892689. doi: 10.34133/2021/9892689. eCollection 2021.
7
A rose bengal/graphene oxide/PVA hybrid hydrogel with enhanced mechanical properties and light-triggered antibacterial activity for wound treatment.
Mater Sci Eng C Mater Biol Appl. 2021 Jan;118:111447. doi: 10.1016/j.msec.2020.111447. Epub 2020 Aug 27.
9
Visible-light-mediated, additive-free, and open-to-air controlled radical polymerization of acrylates and acrylamides.
Polym Chem. 2019 Apr 7;10(13):1585-1590. doi: 10.1039/C9PY00022D. Epub 2019 Feb 8.
10
Functionalized cell-free scaffolds for bone defect repair inspired by self-healing of bone fractures: A review and new perspectives.
Mater Sci Eng C Mater Biol Appl. 2019 May;98:1241-1251. doi: 10.1016/j.msec.2019.01.075. Epub 2019 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验