Suppr超能文献

基于卷积神经网络和长短期记忆的精神疲劳状态识别方法

[Mental fatigue state recognition method based on convolution neural network and long short-term memory].

作者信息

Wang Hui, Zhang Pin, Jin Fenghu, Zhao Baoyong, Zeng Qinbo, Xiao Wendong

机构信息

School of Automation, University of Science And Technology Beijing, Beijing 100083, P. R. China.

China Ordnance Equipment Group Automation Research Institute Co., Mianyang, Sichuan 621000, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Feb 25;41(1):34-40. doi: 10.7507/1001-5515.202306016.

Abstract

The pace of modern life is accelerating, the pressure of life is gradually increasing, and the long-term accumulation of mental fatigue poses a threat to health. By analyzing physiological signals and parameters, this paper proposes a method that can identify the state of mental fatigue, which helps to maintain a healthy life. The method proposed in this paper is a new recognition method of psychological fatigue state of electrocardiogram signals based on convolutional neural network and long short-term memory. Firstly, the convolution layer of one-dimensional convolutional neural network model is used to extract local features, the key information is extracted through pooling layer, and some redundant data is removed. Then, the extracted features are used as input to the long short-term memory model to further fuse the ECG features. Finally, by integrating the key information through the full connection layer, the accurate recognition of mental fatigue state is successfully realized. The results show that compared with traditional machine learning algorithms, the proposed method significantly improves the accuracy of mental fatigue recognition to 96.3%, which provides a reliable basis for the early warning and evaluation of mental fatigue.

摘要

现代生活节奏在加快,生活压力逐渐增大,长期积累的精神疲劳对健康构成威胁。通过分析生理信号和参数,本文提出一种能够识别精神疲劳状态的方法,这有助于保持健康生活。本文提出的方法是一种基于卷积神经网络和长短期记忆的心电图信号心理疲劳状态的新识别方法。首先,利用一维卷积神经网络模型的卷积层提取局部特征,通过池化层提取关键信息,并去除一些冗余数据。然后,将提取的特征作为输入到长短期记忆模型中,进一步融合心电图特征。最后,通过全连接层整合关键信息,成功实现对精神疲劳状态的准确识别。结果表明,与传统机器学习算法相比,该方法将精神疲劳识别准确率显著提高到96.3%,为精神疲劳的预警和评估提供了可靠依据。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验