Suppr超能文献

通过数据驱动的资源共享缓解新冠疫情。

Mitigating the COVID-19 Pandemic through Data-Driven Resource Sharing.

作者信息

Keyvanshokooh Esmaeil, Fattahi Mohammad, Freedberg Kenneth A, Kazemian Pooyan

机构信息

Department of Information & Operations Management, Mays Business School, Texas A&M University, College Station, TX 77845, USA.

Newcastle Business School, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.

出版信息

Nav Res Logist. 2024 Feb;71(1):41-63. doi: 10.1002/nav.22117. Epub 2023 Apr 29.

Abstract

COVID-19 outbreaks in local communities can result in a drastic surge in demand for scarce resources such as mechanical ventilators. To deal with such demand surges, many hospitals (1) purchased large quantities of mechanical ventilators, and (2) canceled/postponed elective procedures to preserve care capacity for COVID-19 patients. These measures resulted in a substantial financial burden to the hospitals and poor outcomes for non-COVID-19 patients. Given that COVID-19 transmits at different rates across various regions, there is an opportunity to share portable healthcare resources to mitigate capacity shortages triggered by local outbreaks with fewer total resources. This paper develops a novel data-driven adaptive robust simulation-based optimization (DARSO) methodology for optimal allocation and relocation of mechanical ventilators over different states and regions. Our main methodological contributions lie in a new policy-guided approach and an efficient algorithmic framework that mitigates critical limitations of current robust and stochastic models and make resource-sharing decisions implementable in real-time. In collaboration with epidemiologists and infectious disease doctors, we give proof of concept for the DARSO methodology through a case study of sharing ventilators among regions in Ohio and Michigan. The results suggest that our optimal policy could satisfy ventilator demand during the first pandemic's peak in Ohio and Michigan with 14% (limited sharing) to 63% (full sharing) fewer ventilators compared to a no sharing strategy (status quo), thereby allowing hospitals to preserve more elective procedures. Furthermore, we demonstrate that sharing unused ventilators (rather than purchasing new machines) can result in 5% (limited sharing) to 44% (full sharing) lower expenditure, compared to no sharing, considering the transshipment and new ventilator costs.

摘要

当地社区的新冠疫情爆发可能导致对机械呼吸机等稀缺资源的需求急剧飙升。为应对此类需求激增情况,许多医院采取了以下措施:(1)大量采购机械呼吸机;(2)取消/推迟择期手术,以保留为新冠患者提供护理的能力。这些措施给医院带来了沉重的经济负担,也给非新冠患者带来了不良后果。鉴于新冠病毒在不同地区的传播速度不同,因此有机会共享便携式医疗资源,以用更少的总资源缓解局部疫情引发的能力短缺问题。本文开发了一种新颖的数据驱动自适应鲁棒模拟优化(DARSO)方法,用于在不同州和地区对机械呼吸机进行最优分配和重新配置。我们主要的方法贡献在于一种新的政策导向方法和一个高效的算法框架,该框架减轻了当前鲁棒模型和随机模型的关键局限性,并使资源共享决策能够实时实施。我们与流行病学家和传染病医生合作,通过对俄亥俄州和密歇根州各地区之间共享呼吸机的案例研究,验证了DARSO方法的概念。结果表明,与不共享策略(现状)相比,我们的最优政策能够在俄亥俄州和密歇根州疫情首个高峰期满足呼吸机需求,所需呼吸机数量减少14%(有限共享)至63%(完全共享),从而使医院能够保留更多的择期手术。此外,考虑到转运和新呼吸机成本,我们证明与不共享相比,共享未使用的呼吸机(而非购买新机器)可使支出降低5%(有限共享)至44%(完全共享)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验