Suppr超能文献

PONG:一种通过双半球激活实现视觉单词识别的计算模型。

PONG: A computational model of visual word recognition through bihemispheric activation.

作者信息

Snell Joshua

机构信息

Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam.

出版信息

Psychol Rev. 2025 Apr;132(3):505-527. doi: 10.1037/rev0000461. Epub 2024 Feb 26.

Abstract

Orthographic processing is an open problem. Decades of visual word recognition research have fueled the development of various theoretical frameworks. Although these frameworks have had good explanatory power, various recent results cannot be satisfactorily captured in any model. In order to account for old and new phenomena alike, here I present a new theory of how the brain computes letter positions. According to (which describes the ), each hemisphere of the brain comprises a set of mono- and multigram detectors. The crux is that the detectors for a given N-gram are activated to different extents in their respective hemispheres, depending on where in the visual field the N-gram is located. This differential activity allows the brain to estimate the leftness or rightness of that N-gram, whereby word activation is a function of the N-gram's identity plus its laterality relative to that of other activated N-grams. Simulations with PONG suggest that the framework effectively accounts for classic phenomena, as well as newer phenomena and cross-linguistic differences that cannot be explained by other models. I also reflect on the neurophysiological plausibility of the model and avenues for future inquiry. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

摘要

正字法加工是一个尚未解决的问题。数十年的视觉单词识别研究推动了各种理论框架的发展。尽管这些框架具有良好的解释力,但最近的各种结果在任何模型中都无法得到令人满意的解释。为了兼顾新旧现象,在此我提出一种关于大脑如何计算字母位置的新理论。根据 (其描述了 ),大脑的每个半球都包含一组单字和多字检测器。关键在于,对于给定的N元组,其检测器在各自半球中的激活程度不同,这取决于该N元组在视野中的位置。这种差异活动使大脑能够估计该N元组的左向性或右向性,由此单词激活是N元组的身份及其相对于其他激活的N元组的横向性的函数。使用PONG进行的模拟表明,该框架有效地解释了经典现象,以及其他模型无法解释的新现象和跨语言差异。我还思考了该模型的神经生理学合理性以及未来研究的方向。(PsycInfo数据库记录(c)2025美国心理学会,保留所有权利)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验