Suppr超能文献

使用贝叶斯推理识别癫痫中的时空发作传播模式。

Identifying spatio-temporal seizure propagation patterns in epilepsy using Bayesian inference.

机构信息

Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France.

Epileptology Department and Clinical Neurophysiology Department, Assistance publique des Hopitaux de Marseille, Marseille, France.

出版信息

Commun Biol. 2021 Nov 1;4(1):1244. doi: 10.1038/s42003-021-02751-5.

Abstract

Focal drug resistant epilepsy is a neurological disorder characterized by seizures caused by abnormal activity originating in one or more regions together called as epileptogenic zone. Treatment for such patients involves surgical resection of affected regions. Epileptogenic zone is typically identified using stereotactic EEG recordings from the electrodes implanted into the patient's brain. Identifying the epileptogenic zone is a challenging problem due to the spatial sparsity of electrode implantation. We propose a probabilistic hierarchical model of seizure propagation patterns, based on a phenomenological model of seizure dynamics called Epileptor. Using Bayesian inference, the Epileptor model is optimized to build patient specific virtual models that best fit to the log power of intracranial recordings. First, accuracy of the model predictions and identifiability of the model are investigated using synthetic data. Then, model predictions are evaluated against a retrospective patient cohort of 25 patients with varying surgical outcomes. In the patients who are seizure free after surgery, model predictions showed good match with the clinical hypothesis. In patients where surgery failed to achieve seizure freedom model predictions showed a strong mismatch. Our results demonstrate that proposed probabilistic model could be a valuable tool to aid the clinicians in identifying the seizure focus.

摘要

局灶性耐药性癫痫是一种神经系统疾病,其特征是由起源于一个或多个称为致痫区的区域的异常活动引起的癫痫发作。此类患者的治疗包括受影响区域的手术切除。致痫区通常使用植入患者大脑的电极进行立体脑电图记录来识别。由于电极植入的空间稀疏性,识别致痫区是一个具有挑战性的问题。我们提出了一种基于癫痫动力学现象模型的癫痫发作传播模式的概率层次模型,称为 Epileptor。使用贝叶斯推断,对 Epileptor 模型进行优化,以构建最适合颅内记录对数功率的患者特定虚拟模型。首先,使用合成数据研究模型预测的准确性和模型的可识别性。然后,根据 25 名具有不同手术结果的回顾性患者队列评估模型预测。在手术后无癫痫发作的患者中,模型预测与临床假设吻合良好。在手术未能实现无癫痫发作的患者中,模型预测显示出强烈的不匹配。我们的结果表明,所提出的概率模型可能是帮助临床医生识别癫痫发作焦点的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3882/8560929/bfa1b69ad663/42003_2021_2751_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验