Yan Chao, Grabowska Monika E, Dickson Alyson L, Li Bingshan, Wen Zhexing, Roden Dan M, Michael Stein C, Embí Peter J, Peterson Josh F, Feng QiPing, Malin Bradley A, Wei Wei-Qi
Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.
Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
NPJ Digit Med. 2024 Feb 26;7(1):46. doi: 10.1038/s41746-024-01038-3.
Drug repurposing represents an attractive alternative to the costly and time-consuming process of new drug development, particularly for serious, widespread conditions with limited effective treatments, such as Alzheimer's disease (AD). Emerging generative artificial intelligence (GAI) technologies like ChatGPT offer the promise of expediting the review and summary of scientific knowledge. To examine the feasibility of using GAI for identifying drug repurposing candidates, we iteratively tasked ChatGPT with proposing the twenty most promising drugs for repurposing in AD, and tested the top ten for risk of incident AD in exposed and unexposed individuals over age 65 in two large clinical datasets: (1) Vanderbilt University Medical Center and (2) the All of Us Research Program. Among the candidates suggested by ChatGPT, metformin, simvastatin, and losartan were associated with lower AD risk in meta-analysis. These findings suggest GAI technologies can assimilate scientific insights from an extensive Internet-based search space, helping to prioritize drug repurposing candidates and facilitate the treatment of diseases.
药物再利用是新药开发这一成本高昂且耗时过程的一种有吸引力的替代方案,对于像阿尔茨海默病(AD)这种有效治疗方法有限的严重、广泛流行的疾病而言尤其如此。像ChatGPT这样新兴的生成式人工智能(GAI)技术有望加快科学知识的审查和总结。为了检验使用GAI识别药物再利用候选药物的可行性,我们反复要求ChatGPT提出二十种最有前景的用于AD再利用的药物,并在两个大型临床数据集中测试了排名前十的药物在65岁以上暴露和未暴露个体中发生AD的风险:(1)范德比尔特大学医学中心和(2)我们所有人研究计划。在ChatGPT建议的候选药物中,二甲双胍、辛伐他汀和氯沙坦在荟萃分析中与较低的AD风险相关。这些发现表明,GAI技术可以从广泛的基于互联网的搜索空间中吸收科学见解,有助于确定药物再利用候选药物的优先级并促进疾病的治疗。