Suppr超能文献

绝经后雌激素受体阳性乳腺癌患者肿瘤周围脂质组成的空间异质性。

Spatial heterogeneity of peri-tumoural lipid composition in postmenopausal patients with oestrogen receptor positive breast cancer.

机构信息

School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.

Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA.

出版信息

Sci Rep. 2024 Feb 26;14(1):4699. doi: 10.1038/s41598-024-55458-y.

Abstract

Deregulation of lipid composition in adipose tissue adjacent to breast tumour is observed in ex vivo and animal models. Novel non-invasive magnetic resonance imaging (MRI) allows rapid lipid mapping of the human whole breast. We set out to elucidate the spatial heterogeneity of peri-tumoural lipid composition in postmenopausal patients with oestrogen receptor positive (ER +) breast cancer. Thirteen participants (mean age, 62 ± [SD] 6 years) with ER + breast cancer and 13 age-matched postmenopausal healthy controls were scanned on MRI. The number of double bonds in triglycerides was computed from MRI images to derive lipid composition maps of monounsaturated, polyunsaturated, and saturated fatty acids (MUFA, PUFA, SFA). The spatial heterogeneity measures (mean, median, skewness, entropy and kurtosis) of lipid composition in the peri-tumoural region and the whole breast of participants and in the whole breast of controls were computed. The Ki-67 proliferative activity marker and CD163 antibody on tumour-associated macrophages were assessed histologically. Mann Whitney U or Wilcoxon tests and Spearman's coefficients were used to assess group differences and correlations, respectively. For comparison against the whole breast in participants, peri-tumoural MUFA had a lower mean (median (IQR), 0.40 (0.02), p < .001), lower median (0.42 (0.02), p < .001), a negative skewness with lower magnitude (- 1.65 (0.77), p = .001), higher entropy (4.35 (0.64), p = .007) and lower kurtosis (5.13 (3.99), p = .001). Peri-tumoural PUFA had a lower mean (p < .001), lower median (p < .001), a positive skewness with higher magnitude (p = .005) and lower entropy (p = .002). Peri-tumoural SFA had a higher mean (p < .001), higher median (p < .001), a positive skewness with lower magnitude (p < .001) and lower entropy (p = .012). For comparison against the whole breast in controls, peri-tumoural MUFA had a negative skewness with lower magnitude (p = .01) and lower kurtosis (p = .009), however there was no difference in PUFA or SFA. CD163 moderately correlated with peri-tumoural MUFA skewness (r = - .64), PUFA entropy (r = .63) and SFA skewness (r = .59). There was a lower MUFA and PUFA while a higher SFA, and a higher heterogeneity of MUFA while a lower heterogeneity of PUFA and SFA, in the peri-tumoural region in comparison with the whole breast tissue. The degree of lipid deregulation was associated with inflammation as indicated by CD163 antibody on macrophages, serving as potential marker for early diagnosis and response to therapy.

摘要

在离体和动物模型中观察到与乳房肿瘤相邻的脂肪组织中脂质组成的去调控。新型非侵入性磁共振成像(MRI)允许快速绘制人类整个乳房的脂质图谱。我们着手阐明绝经后雌激素受体阳性(ER+)乳腺癌患者肿瘤周围脂质组成的空间异质性。13 名参与者(平均年龄 62±6 岁)患有 ER+乳腺癌和 13 名年龄匹配的绝经后健康对照者接受 MRI 扫描。通过 MRI 图像计算甘油三酯中的双键数量,以得出单不饱和、多不饱和和饱和脂肪酸(MUFA、PUFA、SFA)的脂质组成图。计算参与者肿瘤周围区域和整个乳房以及对照组整个乳房中脂质组成的空间异质性度量(均值、中位数、偏度、熵和峰度)。评估肿瘤相关巨噬细胞上的 Ki-67 增殖活性标志物和 CD163 抗体的组织学表现。使用曼-惠特尼 U 或威尔科克森检验以及斯皮尔曼系数分别评估组间差异和相关性。与参与者的整个乳房相比,肿瘤周围 MUFA 的均值(中位数(IQR),0.40(0.02),p<0.001)和中位数(0.42(0.02),p<0.001)均较低,负偏度较小(-1.65(0.77),p=0.001),熵较高(4.35(0.64),p=0.007),峰度较低(5.13(3.99),p=0.001)。肿瘤周围 PUFA 的均值较低(p<0.001),中位数较低(p<0.001),正偏度较大(p=0.005),熵较低(p=0.002)。肿瘤周围 SFA 的均值较高(p<0.001),中位数较高(p<0.001),正偏度较小(p<0.001),熵较低(p=0.012)。与对照组的整个乳房相比,肿瘤周围 MUFA 的偏度较小(p=0.01),峰度较小(p=0.009),但 PUFA 或 SFA 没有差异。CD163 与肿瘤周围 MUFA 偏度(r=-0.64)、PUFA 熵(r=0.63)和 SFA 偏度(r=0.59)中度相关。与整个乳房组织相比,肿瘤周围区域的 MUFA 和 PUFA 较低,SFA 较高,MUFA 的异质性较高,而 PUFA 和 SFA 的异质性较低。脂质失调的程度与炎症有关,这由巨噬细胞上的 CD163 抗体表明,可作为早期诊断和对治疗反应的潜在标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b74a/10897464/0634b257b2f2/41598_2024_55458_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验