Suppr超能文献

一种通过优化、深度学习和物联网数据传输,利用CT扫描检测肺癌的综合方法。

An integrated method for detecting lung cancer via CT scanning via optimization, deep learning, and IoT data transmission.

作者信息

Karimullah Shaik, Khan Mudassir, Shaik Fahimuddin, Alabduallah Bayan, Almjally Abrar

机构信息

Department of Electronics and Communications Engineering, Annamacharya Institute of Technology and Sciences (Autonomous), Rajampet, Andhra Pradesh, India.

Department of Computer Science, College of Science & Arts, Tanumah, King Khalid University, Abha, Saudi Arabia.

出版信息

Front Oncol. 2024 Oct 7;14:1435041. doi: 10.3389/fonc.2024.1435041. eCollection 2024.

Abstract

With its increasing global prevalence, lung cancer remains a critical health concern. Despite the advancement of screening programs, patient selection and risk stratification pose significant challenges. This study addresses the pressing need for early detection through a novel diagnostic approach that leverages innovative image processing techniques. The urgency of early lung cancer detection is emphasized by its alarming growth worldwide. While computed tomography (CT) surpasses traditional X-ray methods, a comprehensive diagnosis requires a combination of imaging techniques. This research introduces an advanced diagnostic tool implemented through image processing methodologies. The methodology commences with histogram equalization, a crucial step in artifact removal from CT images sourced from a medical database. Accurate lung CT image segmentation, which is vital for cancer diagnosis, follows. The Otsu thresholding method and optimization, employing Colliding Bodies Optimization (CBO), enhance the precision of the segmentation process. A local binary pattern (LBP) is deployed for feature extraction, enabling the identification of nodule sizes and precise locations. The resulting image underwent classification using the densely connected CNN (DenseNet) deep learning algorithm, which effectively distinguished between benign and malignant tumors. The proposed CBO+DenseNet CNN exhibits remarkable performance improvements over traditional methods. Notable enhancements in accuracy (98.17%), specificity (97.32%), precision (97.46%), and recall (97.89%) are observed, as evidenced by the results from the fractional randomized voting model (FRVM). These findings highlight the potential of the proposed model as an advanced diagnostic tool. Its improved metrics promise heightened accuracy in tumor classification and localization. The proposed model uniquely combines Colliding Bodies Optimization (CBO) with DenseNet CNN, enhancing segmentation and classification accuracy for lung cancer detection, setting it apart from traditional methods with superior performance metrics.

摘要

随着肺癌在全球的患病率不断上升,它仍然是一个关键的健康问题。尽管筛查项目有所进展,但患者选择和风险分层仍面临重大挑战。本研究通过一种利用创新图像处理技术的新型诊断方法,满足了早期检测的迫切需求。肺癌在全球范围内惊人的增长凸显了早期检测的紧迫性。虽然计算机断层扫描(CT)优于传统的X射线方法,但全面诊断需要多种成像技术的结合。本研究引入了一种通过图像处理方法实现的先进诊断工具。该方法首先进行直方图均衡化,这是从医学数据库获取的CT图像中去除伪影的关键步骤。接下来是准确的肺部CT图像分割,这对癌症诊断至关重要。采用碰撞体优化(CBO)的大津阈值法和优化方法提高了分割过程的精度。部署局部二值模式(LBP)进行特征提取,以确定结节大小和精确位置。所得图像使用密集连接卷积神经网络(DenseNet)深度学习算法进行分类,该算法有效地区分了良性和恶性肿瘤。所提出的CBO+DenseNet CNN相对于传统方法表现出显著的性能提升。分数随机投票模型(FRVM)的结果表明,在准确性(98.17%)、特异性(97.32%)、精确率(97.46%)和召回率(97.89%)方面有显著提高。这些发现突出了所提出模型作为先进诊断工具的潜力。其改进的指标有望提高肿瘤分类和定位的准确性。所提出的模型独特地将碰撞体优化(CBO)与DenseNet CNN相结合,提高了肺癌检测的分割和分类准确性,以其卓越的性能指标区别于传统方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/baee/11491319/8361188a9956/fonc-14-1435041-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验