Suppr超能文献

RAD-UNet:基于深度学习的改进型肺结节语义分割算法研究

RAD-UNet: Research on an improved lung nodule semantic segmentation algorithm based on deep learning.

作者信息

Wu Zezhi, Li Xiaoshu, Zuo Jianhui

机构信息

Department of Computer Science, Anhui Medical University, Hefei, Anhui, China.

Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.

出版信息

Front Oncol. 2023 Mar 23;13:1084096. doi: 10.3389/fonc.2023.1084096. eCollection 2023.

Abstract

OBJECTIVE

Due to the small proportion of target pixels in computed tomography (CT) images and the high similarity with the environment, convolutional neural network-based semantic segmentation models are difficult to develop by using deep learning. Extracting feature information often leads to under- or oversegmentation of lesions in CT images. In this paper, an improved convolutional neural network segmentation model known as RAD-UNet, which is based on the U-Net encoder-decoder architecture, is proposed and applied to lung nodular segmentation in CT images.

METHOD

The proposed RAD-UNet segmentation model includes several improved components: the U-Net encoder is replaced by a ResNet residual network module; an atrous spatial pyramid pooling module is added after the U-Net encoder; and the U-Net decoder is improved by introducing a cross-fusion feature module with channel and spatial attention.

RESULTS

The segmentation model was applied to the LIDC dataset and a CT dataset collected by the Affiliated Hospital of Anhui Medical University. The experimental results show that compared with the existing SegNet [14] and U-Net [15] methods, the proposed model demonstrates better lung lesion segmentation performance. On the above two datasets, the mIoU reached 87.76% and 88.13%, and the F1-score reached 93.56% and 93.72%, respectively. Conclusion: The experimental results show that the improved RAD-UNet segmentation method achieves more accurate pixel-level segmentation in CT images of lung tumours and identifies lung nodules better than the SegNet [14] and U-Net [15] models. The problems of under- and oversegmentation that occur during segmentation are solved, effectively improving the image segmentation performance.

摘要

目的

由于计算机断层扫描(CT)图像中目标像素比例小且与周围环境相似度高,基于卷积神经网络的语义分割模型难以通过深度学习进行开发。提取特征信息时,CT图像中的病变常出现分割不足或过度分割的情况。本文提出了一种基于U-Net编码器-解码器架构的改进卷积神经网络分割模型RAD-UNet,并将其应用于CT图像中的肺结节分割。

方法

所提出的RAD-UNet分割模型包含几个改进组件:用ResNet残差网络模块替换U-Net编码器;在U-Net编码器之后添加空洞空间金字塔池化模块;通过引入具有通道和空间注意力的交叉融合特征模块改进U-Net解码器。

结果

将该分割模型应用于LIDC数据集和安徽医科大学附属第一医院收集的CT数据集。实验结果表明,与现有的SegNet[14]和U-Net[15]方法相比,所提模型在肺病变分割性能上表现更优。在上述两个数据集上,平均交并比分别达到87.76%和88.13%,F1分数分别达到93.56%和93.72%。结论:实验结果表明,改进后的RAD-UNet分割方法在肺肿瘤CT图像中实现了更精确的像素级分割,在识别肺结节方面优于SegNet[14]和U-Net[15]模型。解决了分割过程中出现的分割不足和过度分割问题,有效提高了图像分割性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fabb/10076852/d4411449feae/fonc-13-1084096-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验