Suppr超能文献

PMF-seq:一种链接遗传学与线粒体生物能量学的高可扩展筛选策略。

PMF-seq: a highly scalable screening strategy for linking genetics to mitochondrial bioenergetics.

机构信息

Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

出版信息

Nat Metab. 2024 Apr;6(4):687-696. doi: 10.1038/s42255-024-00994-0. Epub 2024 Feb 27.

Abstract

Our current understanding of mitochondrial organelle physiology has benefited from two broad approaches: classically, cuvette-based measurements with suspensions of isolated mitochondria, in which bioenergetic parameters are monitored acutely in response to respiratory chain substrates and inhibitors, and more recently, highly scalable genetic screens for fitness phenotypes associated with coarse-grained properties of the mitochondrial state. Here we introduce permeabilized-cell mitochondrial function sequencing (PMF-seq) to combine strengths of these two approaches to connect genes to detailed bioenergetic phenotypes. In PMF-seq, the plasma membranes within a pool of CRISPR mutagenized cells are gently permeabilized under conditions that preserve mitochondrial physiology, where detailed bioenergetics can be probed in the same way as with isolated organelles. Cells with desired bioenergetic parameters are selected optically using flow cytometry and subjected to next-generation sequencing. Using PMF-seq, we recover genes differentially required for mitochondrial respiratory chain branching and reversibility. We demonstrate that human D-lactate dehydrogenase specifically conveys electrons from D-lactate into cytochrome c to support mitochondrial membrane polarization. Finally, we screen for genetic modifiers of tBID, a pro-apoptotic protein that acts directly and acutely on mitochondria. We find the loss of the complex V assembly factor ATPAF2 acts as a genetic sensitizer of tBID's acute action. We anticipate that PMF-seq will be valuable for defining genes critical to the physiology of mitochondria and other organelles.

摘要

我们目前对线粒体细胞器生理学的理解受益于两种广泛的方法

传统上,使用分离的线粒体悬浮液进行基于比色杯的测量,其中生物能量参数会在呼吸链底物和抑制剂的急性刺激下进行监测,以及最近,与线粒体状态的粗粒度特性相关的适应性表型的高通量遗传筛选。在这里,我们引入了通透性细胞线粒体功能测序(PMF-seq),将这两种方法的优势结合起来,将基因与详细的生物能量表型联系起来。在 PMF-seq 中,在一组经过 CRISPR 诱变的细胞的质膜在保留线粒体生理学的条件下被温和地通透化,在这种情况下,可以以与分离的细胞器相同的方式探测详细的生物能量。使用流式细胞术对具有所需生物能量参数的细胞进行光学选择,并进行下一代测序。使用 PMF-seq,我们恢复了线粒体呼吸链分支和可逆性所需的差异基因。我们证明人类 D-乳酸脱氢酶特异性地将电子从 D-乳酸传递到细胞色素 c 中,以支持线粒体膜极化。最后,我们筛选 tBID 的遗传修饰物,tBID 是一种直接作用于线粒体的促凋亡蛋白。我们发现复合物 V 组装因子 ATPAF2 的缺失是 tBID 急性作用的遗传敏化剂。我们预计 PMF-seq 将对定义对线粒体和其他细胞器生理学至关重要的基因非常有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8769/11052718/fde219467723/42255_2024_994_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验