Suppr超能文献

利用卷积神经网络鉴别轻度认知障碍的 Rey-Osterrieth 复杂图形测验子任务的不等效性。

Non-equivalence of sub-tasks of the Rey-Osterrieth Complex Figure Test with convolutional neural networks to discriminate mild cognitive impairment.

机构信息

Department of Occupational Therapy, College of Medical Science, Soonchunhyang University, Room 1401, College of Medical Science, 22 Soonchunhyang-ro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Republic of Korea.

出版信息

BMC Psychiatry. 2024 Feb 27;24(1):166. doi: 10.1186/s12888-024-05622-5.

Abstract

BACKGROUND

The Rey-Osterrieth Complex Figure Test (RCFT) is a tool to evaluate cognitive function. Despite its usefulness, its scoring criteria are as complicated as its figure, leading to a low reliability. Therefore, this study aimed to determine the feasibility of using the convolutional neural network (CNN) model based on the RCFT as a screening tool for mild cognitive impairment (MCI) and investigate the non-equivalence of sub-tasks of the RCFT.

METHODS

A total of 354 RCFT images (copy and recall conditions) were obtained from 103 healthy controls (HCs) and 74 patients with amnestic MCI (a-MCI). The CNN model was trained to predict MCI based on the RCFT-copy and RCFT-recall images. To evaluate the CNN model's performance, accuracy, sensitivity, specificity, and F1-score were measured. To compare discriminative power, the area under the curve (AUC) was calculated by the receiver operating characteristic (ROC) curve analysis.

RESULTS

The CNN model based on the RCFT-recall was the most accurate in discriminating a-MCI (accuracy: RCFT-copy = 0.846, RCFT-recall = 0.872, MoCA-K = 0.818). Furthermore, the CNN model based on the RCFT could better discriminate MCI than the MoCA-K (AUC: RCFT-copy = 0.851, RCFT-recall = 0.88, MoCA-K = 0.848). The CNN model based on the RCFT-recall was superior to the RCFT-copy.

CONCLUSION

These findings suggest the feasibility of using the CNN model based on the RCFT as a surrogate for a conventional screening tool for a-MCI and demonstrate the superiority of the CNN model based on the RCFT-recall to the RCFT-copy.

摘要

背景

瑞文氏渐进性智力测验(RCFT)是一种评估认知功能的工具。尽管它很有用,但它的评分标准和其图形一样复杂,导致可靠性较低。因此,本研究旨在确定基于 RCFT 的卷积神经网络(CNN)模型作为轻度认知障碍(MCI)筛查工具的可行性,并探讨 RCFT 子任务的非等效性。

方法

共获得 103 名健康对照者(HCs)和 74 名遗忘型轻度认知障碍(a-MCI)患者的 354 张 RCFT 图像(复制和回忆条件)。基于 RCFT 复制和 RCFT 回忆图像训练 CNN 模型来预测 MCI。为了评估 CNN 模型的性能,测量了准确性、敏感性、特异性和 F1 分数。通过接收者操作特征(ROC)曲线分析计算曲线下面积(AUC)来比较判别能力。

结果

RCFT 回忆的 CNN 模型在区分 a-MCI 方面最为准确(准确性:RCFT 复制=0.846,RCFT 回忆=0.872,MoCA-K=0.818)。此外,RCFT 基于的 CNN 模型比 MoCA-K 能更好地辨别 MCI(AUC:RCFT 复制=0.851,RCFT 回忆=0.88,MoCA-K=0.848)。RCFT 回忆的 CNN 模型优于 RCFT 复制。

结论

这些发现表明,基于 RCFT 的 CNN 模型作为替代传统 a-MCI 筛查工具具有可行性,并证明了基于 RCFT 回忆的 CNN 模型优于 RCFT 复制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30a/10900783/583e22856ddd/12888_2024_5622_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验