Suppr超能文献

使用实验得出的腈电场对蛋白质的可极化和不可极化力场进行批判性评估。

Critical Evaluation of Polarizable and Nonpolarizable Force Fields for Proteins Using Experimentally Derived Nitrile Electric Fields.

作者信息

Kirsh Jacob M, Weaver Jared Bryce, Boxer Steven G, Kozuch Jacek

机构信息

Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States.

Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany.

出版信息

J Am Chem Soc. 2024 Mar 13;146(10):6983-6991. doi: 10.1021/jacs.3c14775. Epub 2024 Feb 28.

Abstract

Molecular dynamics (MD) simulations are frequently carried out for proteins to investigate the role of electrostatics in their biological function. The choice of force field (FF) can significantly alter the MD results, as the simulated local electrostatic interactions lack benchmarking in the absence of appropriate experimental methods. We recently reported that the transition dipole moment (TDM) of the popular nitrile vibrational probe varies linearly with the environmental electric field, overcoming well-known hydrogen bonding (H-bonding) issues for the nitrile frequency and, thus, enabling the unambiguous measurement of electric fields in proteins ( , (17), 7562-7567). Herein, we utilize this new strategy to enable comparisons of experimental and simulated electric fields in protein environments. Specifically, previously determined TDM electric fields exerted onto nitrile-containing -cyanophenylalanine residues in photoactive yellow protein are compared with MD electric fields from the fixed-charge AMBER FF and the polarizable AMOEBA FF. We observe that the electric field distributions for H-bonding nitriles are substantially affected by the choice of FF. As such, AMBER underestimates electric fields for nitriles experiencing moderate field strengths; in contrast, AMOEBA robustly recapitulates the TDM electric fields. The FF dependence of the electric fields can be partly explained by the presence of additional negative charge density along the nitrile bond axis in AMOEBA, which is due to the inclusion of higher-order multipole parameters; this, in turn, begets more head-on nitrile H-bonds. We conclude by discussing the implications of the FF dependence for the simulation of nitriles and proteins in general.

摘要

分子动力学(MD)模拟常用于蛋白质研究,以探究静电作用在其生物学功能中的作用。力场(FF)的选择会显著改变MD模拟结果,因为在缺乏适当实验方法的情况下,模拟的局部静电相互作用缺乏基准。我们最近报道,常用的腈类振动探针的跃迁偶极矩(TDM)与环境电场呈线性变化,克服了腈类频率中众所周知的氢键(H键)问题,从而能够明确测量蛋白质中的电场( ,(17),7562 - 7567)。在此,我们利用这一新策略来比较蛋白质环境中实验电场和模拟电场。具体而言,将先前测定的施加在光活性黄色蛋白中含腈基的对氰基苯丙氨酸残基上的TDM电场与来自固定电荷AMBER力场和可极化AMOEBA力场的MD电场进行比较。我们观察到,氢键腈类的电场分布受FF选择的显著影响。因此,AMBER低估了中等场强下腈类的电场;相比之下,AMOEBA能有力地重现TDM电场。电场对FF的依赖性部分可以通过AMOEBA中腈键轴上存在额外的负电荷密度来解释,这是由于包含了高阶多极参数;反过来,这又产生了更多直接的腈类H键。最后,我们讨论了FF依赖性对一般腈类和蛋白质模拟的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e17/10941190/0ad19221e1f5/ja3c14775_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验