Suppr超能文献

增强的活性位点电场加速了酶催化。

Enhanced active-site electric field accelerates enzyme catalysis.

机构信息

Department of Chemistry, Stanford University, Stanford, CA, USA.

Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, USA.

出版信息

Nat Chem. 2023 Dec;15(12):1715-1721. doi: 10.1038/s41557-023-01287-x. Epub 2023 Aug 10.

Abstract

The design and improvement of enzymes based on physical principles remain challenging. Here we demonstrate that the principle of electrostatic catalysis can be leveraged to substantially improve a natural enzyme's activity. We enhanced the active-site electric field in horse liver alcohol dehydrogenase by replacing the serine hydrogen-bond donor with threonine and replacing the catalytic Zn with Co. Based on the electric field enhancement, we make a quantitative prediction of rate acceleration-50-fold faster than the wild-type enzyme-which was in close agreement with experimental measurements. The effects of the hydrogen bonding and metal coordination, two distinct chemical forces, are described by a unified physical quantity-electric field, which is quantitative, and shown here to be additive and predictive. These results suggest a new design paradigm for both biological and non-biological catalysts.

摘要

基于物理原理的酶的设计和改进仍然具有挑战性。在这里,我们证明了静电催化原理可以被用来显著提高天然酶的活性。我们通过用苏氨酸取代丝氨酸的氢键供体,并将催化锌替换为钴,增强了马肝醇脱氢酶的活性部位电场。基于电场增强,我们对速率加速做出了定量预测——比野生型酶快 50 倍——这与实验测量结果非常吻合。氢键和金属配位这两种不同的化学力的影响可以用一个统一的物理量——电场来描述,这个物理量是定量的,并被证明是可加的和可预测的。这些结果为生物和非生物催化剂的设计提供了一个新的范例。

相似文献

1
Enhanced active-site electric field accelerates enzyme catalysis.增强的活性位点电场加速了酶催化。
Nat Chem. 2023 Dec;15(12):1715-1721. doi: 10.1038/s41557-023-01287-x. Epub 2023 Aug 10.
4
A simplified electrostatic model for hydrolase catalysis.水解酶催化的简化静电模型。
Int J Biol Macromol. 2015 Jul;78:257-65. doi: 10.1016/j.ijbiomac.2015.04.010. Epub 2015 Apr 13.
7
Electric Fields and Enzyme Catalysis.电场与酶催化
Annu Rev Biochem. 2017 Jun 20;86:387-415. doi: 10.1146/annurev-biochem-061516-044432. Epub 2017 Mar 24.

引用本文的文献

7
Preorganized Electric Fields in Voltage-Gated Sodium Channels.电压门控钠通道中的预组织电场。
Chembiochem. 2025 May 27;26(10):e202500314. doi: 10.1002/cbic.202500314. Epub 2025 May 21.
8
Spatially Regulated Electrical Forces for Biological Catalysis.用于生物催化的空间调控电场力
Rev Physiol Biochem Pharmacol. 2025;187:239-250. doi: 10.1007/978-3-031-68827-0_14.

本文引用的文献

2
Scaffolding protein functional sites using deep learning.利用深度学习构建支架蛋白功能位点。
Science. 2022 Jul 22;377(6604):387-394. doi: 10.1126/science.abn2100. Epub 2022 Jul 21.
3
The road to fully programmable protein catalysis.通往完全可编程的蛋白质催化之路。
Nature. 2022 Jun;606(7912):49-58. doi: 10.1038/s41586-022-04456-z. Epub 2022 Jun 1.
6
De novo protein design by deep network hallucination.基于深度网络幻觉的从头设计蛋白质。
Nature. 2021 Dec;600(7889):547-552. doi: 10.1038/s41586-021-04184-w. Epub 2021 Dec 1.
7
Evolution of dynamical networks enhances catalysis in a designer enzyme.动态网络的演化增强了设计酶的催化作用。
Nat Chem. 2021 Oct;13(10):1017-1022. doi: 10.1038/s41557-021-00763-6. Epub 2021 Aug 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验