Suppr超能文献

DERNA 实现帕累托最优 RNA 设计。

DERNA Enables Pareto Optimal RNA Design.

机构信息

Department of Computer Science and University of Illinois Urbana-Champaign, Urbana, Illinois, USA.

Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.

出版信息

J Comput Biol. 2024 Mar;31(3):179-196. doi: 10.1089/cmb.2023.0283. Epub 2024 Feb 27.

Abstract

The design of an RNA sequence that encodes an input target protein sequence is a crucial aspect of messenger RNA (mRNA) vaccine development. There are an exponential number of possible RNA sequences for a single target protein due to codon degeneracy. These potential RNA sequences can assume various secondary structure conformations, each with distinct minimum free energy (MFE), impacting thermodynamic stability and mRNA half-life. Furthermore, the presence of species-specific codon usage bias, quantified by the codon adaptation index (CAI), plays a vital role in translation efficiency. While earlier studies focused on optimizing either MFE or CAI, recent research has underscored the advantages of simultaneously optimizing both objectives. However, optimizing one objective comes at the expense of the other. In this work, we present the Pareto Optimal RNA Design problem, aiming to identify the set of Pareto optimal solutions for which no alternative solutions exist that exhibit better MFE and CAI values. Our algorithm DEsign RNA (DERNA) uses the weighted sum method to enumerate the Pareto front by optimizing convex combinations of both objectives. We use dynamic programming to solve each convex combination in time and space. Compared with a CDSfold, previous approach that only optimizes MFE, we show on a benchmark data set that DERNA obtains solutions with identical MFE but superior CAI. Moreover, we show that DERNA matches the performance in terms of solution quality of LinearDesign, a recent approach that similarly seeks to balance MFE and CAI. We conclude by demonstrating our method's potential for mRNA vaccine design for the SARS-CoV-2 spike protein.

摘要

设计编码输入靶蛋白序列的 RNA 序列是信使 RNA(mRNA)疫苗开发的关键方面。由于密码子简并性,单个靶蛋白有大量可能的 RNA 序列。这些潜在的 RNA 序列可以假设各种二级结构构象,每个构象都具有不同的最小自由能(MFE),从而影响热力学稳定性和 mRNA 半衰期。此外,物种特异性密码子使用偏好(由密码子适应指数 (CAI) 量化)在翻译效率中起着至关重要的作用。虽然早期的研究侧重于优化 MFE 或 CAI,但最近的研究强调了同时优化这两个目标的优势。然而,优化一个目标是以牺牲另一个目标为代价的。在这项工作中,我们提出了帕累托最优 RNA 设计问题,旨在确定不存在具有更好 MFE 和 CAI 值的替代解决方案的帕累托最优解集。我们的算法 DEsign RNA (DERNA) 使用加权和方法通过优化两个目标的凸组合来枚举帕累托前沿。我们使用动态规划来解决每个凸组合的时间和空间。与仅优化 MFE 的先前方法 CDSfold 相比,我们在基准数据集上表明,DERNA 获得了具有相同 MFE 但 CAI 更高的解决方案。此外,我们表明 DERNA 在寻求平衡 MFE 和 CAI 的最近方法 LinearDesign 的解决方案质量方面具有相同的性能。最后,我们通过展示我们的方法在 SARS-CoV-2 刺突蛋白的 mRNA 疫苗设计中的潜力来结束本文。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验