Suppr超能文献

基于医疗物联网的三级医疗慢性阻塞性肺疾病合并阻塞性睡眠呼吸暂停筛查与预警系统:一项前瞻性、多中心、观察性队列研究方案。

Screening and early warning system for chronic obstructive pulmonary disease with obstructive sleep apnoea based on the medical Internet of Things in three levels of healthcare: protocol for a prospective, multicentre, observational cohort study.

机构信息

Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China.

General Practice Medicine, Peking University First Hospital, Beijing, China.

出版信息

BMJ Open. 2024 Feb 28;14(2):e075257. doi: 10.1136/bmjopen-2023-075257.

Abstract

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) and obstructive sleep apnoea (OSA) are prevalent respiratory diseases in China and impose significant burdens on the healthcare system. Moreover, the co-occurrence of COPD and OSA exacerbates clinical outcomes significantly. However, comprehensive epidemiological investigations in China remain scarce, and the defining characteristics of the population affected by COPD and OSA, alongside their intrinsic relationship, remain ambiguous.

METHODS AND ANALYSIS

We present a protocol for a prospective, multicentre, observational cohort study based on a digital health management platform across three different healthcare tiers in five sites among Chinese patients with COPD. The study aims to establish predicative models to identify OSA among patients with COPD and to predict the prognosis of overlap syndrome (OS) and acute exacerbations of COPD through the Internet of Things (IoT). Moreover, it aims to evaluate the feasibility, effectiveness and cost-effectiveness of IoT in managing chronic diseases within clinical settings. Participants will undergo baseline assessment, physical examination and nocturnal oxygen saturation measuring. Specific questionnaires screening for OSA will also be administered. Diagnostic lung function tests and polysomnography will be performed to confirm COPD and OSA, respectively. All patients will undergo scheduled follow-ups for 12 months to record the changes in symptoms, lung functions and quality of life. Primary outcomes include the prevalence and characteristics of OS, while secondary outcomes encompass OS prognosis and the feasibility of the management model in clinical contexts. A total of 682 patients with COPD will be recruited over 12-24 months.

ETHICS AND DISSEMINATION

The study has been approved by Peking University Third Hospital, and all study participants will provide written informed consent. Study results will be published in an appropriate journal and presented at national and international conferences, as well as relevant social media and various stakeholder engagement activities.

TRIAL REGISTRATION NUMBER

NCT04833725.

摘要

简介

慢性阻塞性肺疾病(COPD)和阻塞性睡眠呼吸暂停(OSA)是中国常见的呼吸系统疾病,给医疗体系带来了重大负担。此外,COPD 和 OSA 的同时存在显著恶化了临床结局。然而,中国仍缺乏全面的流行病学调查,COPD 和 OSA 患者的人群特征及其内在关系仍不明确。

方法和分析

我们提出了一项基于数字健康管理平台的前瞻性、多中心、观察性队列研究方案,该研究在五个地点的三个不同医疗层级中纳入中国 COPD 患者。该研究旨在建立预测模型,以识别 COPD 患者中的 OSA,并通过物联网(IoT)预测重叠综合征(OS)和 COPD 急性加重的预后。此外,该研究旨在评估物联网在临床环境中管理慢性病的可行性、有效性和成本效益。参与者将接受基线评估、体格检查和夜间血氧饱和度测量。还将进行特定的问卷筛查以确定 OSA。将进行诊断性肺功能测试和多导睡眠图检查以分别确诊 COPD 和 OSA。所有患者将进行 12 个月的定期随访,以记录症状、肺功能和生活质量的变化。主要结局包括 OS 的患病率和特征,次要结局包括 OS 的预后以及管理模式在临床环境中的可行性。将在 12-24 个月内招募 682 名 COPD 患者。

伦理和传播

该研究已获得北京大学第三医院的批准,所有研究参与者将提供书面知情同意。研究结果将发表在适当的期刊上,并在国内外会议上以及相关的社交媒体和各种利益相关者参与活动中展示。

试验注册号

NCT04833725。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/10910414/18f7c65135bd/bmjopen-2023-075257f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验