Fijačko Nino, Creber Ruth Masterson, Abella Benjamin S, Kocbek Primož, Metličar Špela, Greif Robert, Štiglic Gregor
University of Maribor, Faculty of Health Sciences, Maribor, Slovenia.
ERC Research Net, Niels, Belgium.
Resusc Plus. 2024 Feb 22;18:100584. doi: 10.1016/j.resplu.2024.100584. eCollection 2024 Jun.
AIMS: The aim of this study is to use generative artificial intelligence to perform bibliometric analysis on abstracts published at European Resuscitation Council (ERC) annual scientific congress and define trends in ERC guidelines topics over the last decade. METHODS: In this bibliometric analysis, the WebHarvy software (SysNucleus, India) was used to download data from the Resuscitation journal's website through the technique of web scraping. Next, the Chat Generative Pre-trained Transformer 4 (ChatGPT-4) application programming interface (Open AI, USA) was used to implement the multinomial classification of abstract titles following the ERC 2021 guidelines topics. RESULTS: From 2012 to 2022 a total of 2491 abstracts have been published at ERC congresses. Published abstracts ranged from 88 (in 2020) to 368 (in 2015). On average, the most common ERC guidelines topics were (50.1%), followed by (41.5%), while (2.1%) was the least common topic. The findings also highlight that the and ERC guidelines topics have the strongest co-occurrence to all ERC guidelines topics, where the (2.1%; 52/2491) ERC guidelines topic has the weakest co-occurrence. CONCLUSION: This study demonstrates the capabilities of generative artificial intelligence in the bibliometric analysis of abstract titles using the example of resuscitation medicine research over the last decade at ERC conferences using large language models.
目的:本研究旨在利用生成式人工智能对欧洲复苏委员会(ERC)年度科学大会上发表的摘要进行文献计量分析,并确定过去十年中ERC指南主题的趋势。 方法:在这项文献计量分析中,使用WebHarvy软件(印度SysNucleus公司)通过网络爬虫技术从《复苏》杂志网站下载数据。接下来,使用Chat生成式预训练变换器4(ChatGPT-4)应用程序编程接口(美国OpenAI公司)按照ERC 2021指南主题对摘要标题进行多项分类。 结果:2012年至2022年期间,ERC大会共发表了2491篇摘要。发表的摘要数量从2020年的88篇到2015年的368篇不等。平均而言,最常见的ERC指南主题是(50.1%),其次是(41.5%),而(2.1%)是最不常见的主题。研究结果还突出表明,和ERC指南主题与所有ERC指南主题的共现性最强,其中(2.1%;52/2491)ERC指南主题的共现性最弱。 结论:本研究以过去十年在ERC会议上的复苏医学研究为例,展示了生成式人工智能在使用大语言模型对摘要标题进行文献计量分析方面的能力。
Front Biosci (Landmark Ed). 2022-8-31
Stud Health Technol Inform. 2024-7-24
Comput Methods Programs Biomed. 2023-4
Scand J Trauma Resusc Emerg Med. 2012-8-9
Resusc Plus. 2025-3-28
Korean J Physiol Pharmacol. 2024-9-1
Bioengineering (Basel). 2024-3-31
Eur Heart J Digit Health. 2023-4-17
J Nucl Med. 2023-5
Med Educ Online. 2023-12
Am J Transl Res. 2021-3-15
Resuscitation. 2021-4
Resuscitation. 2021-4
Resuscitation. 2021-4
Resuscitation. 2021-4