Suppr超能文献

基于真实医学成像数据的经验数据漂移检测实验。

Empirical data drift detection experiments on real-world medical imaging data.

机构信息

Vector Institute, Toronto, Canada.

Temerity School of Medicine, University of Toronto, Toronto, Canada.

出版信息

Nat Commun. 2024 Feb 29;15(1):1887. doi: 10.1038/s41467-024-46142-w.

Abstract

While it is common to monitor deployed clinical artificial intelligence (AI) models for performance degradation, it is less common for the input data to be monitored for data drift - systemic changes to input distributions. However, when real-time evaluation may not be practical (eg., labeling costs) or when gold-labels are automatically generated, we argue that tracking data drift becomes a vital addition for AI deployments. In this work, we perform empirical experiments on real-world medical imaging to evaluate three data drift detection methods' ability to detect data drift caused (a) naturally (emergence of COVID-19 in X-rays) and (b) synthetically. We find that monitoring performance alone is not a good proxy for detecting data drift and that drift-detection heavily depends on sample size and patient features. Our work discusses the need and utility of data drift detection in various scenarios and highlights gaps in knowledge for the practical application of existing methods.

摘要

虽然监测已部署的临床人工智能 (AI) 模型的性能下降很常见,但监测输入数据是否存在数据漂移(即输入分布的系统性变化)则不太常见。然而,当实时评估不可行(例如,标记成本)或当金标签自动生成时,我们认为跟踪数据漂移对于 AI 部署来说是一个重要的补充。在这项工作中,我们在真实的医学成像上进行了实证实验,以评估三种数据漂移检测方法在检测以下两种情况下的数据漂移的能力:(a) 自然发生的(例如 X 光片中 COVID-19 的出现)和 (b) 人为合成的。我们发现,仅监测性能并不能很好地检测数据漂移,而且漂移检测严重依赖于样本量和患者特征。我们的工作讨论了在各种场景下数据漂移检测的必要性和实用性,并强调了现有方法实际应用中的知识差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2eb/10904813/9839afdd8817/41467_2024_46142_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验