Suppr超能文献

你已经获得了较高的曲线下面积(AUC),接下来怎么办?将机器学习模型从计算机应用到临床床边时的重要考量概述。

So You've Got a High AUC, Now What? An Overview of Important Considerations when Bringing Machine-Learning Models from Computer to Bedside.

作者信息

Deng Jiawen, Elghobashy Mohamed E, Zang Kathleen, Patel Shubh K, Guo Eddie, Heybati Kiyan

机构信息

Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.

Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.

出版信息

Med Decis Making. 2025 Aug;45(6):640-653. doi: 10.1177/0272989X251343082. Epub 2025 May 29.

Abstract

Machine-learning (ML) models have the potential to transform health care by enabling more personalized and data-driven clinical decision making. However, their successful implementation in clinical practice requires careful consideration of factors beyond predictive accuracy. We provide an overview of essential considerations for developing clinically applicable ML models, including methods for assessing and improving calibration, selecting appropriate decision thresholds, enhancing model explainability, identifying and mitigating bias, as well as methods for robust validation. We also discuss strategies for improving accessibility to ML models and performing real-world testing.HighlightsThis tutorial provides clinicians with a comprehensive guide to implementing machine-learning classification models in clinical practice.Key areas covered include model calibration, threshold selection, explainability, bias mitigation, validation, and real-world testing, all of which are essential for the clinical deployment of machine-learning models.Following these guidance can help clinicians bridge the gap between machine-learning model development and real-world application and enhance patient care outcomes.

摘要

机器学习(ML)模型有潜力通过实现更个性化和数据驱动的临床决策来改变医疗保健。然而,它们在临床实践中的成功实施需要仔细考虑预测准确性之外的因素。我们概述了开发临床适用的ML模型的基本注意事项,包括评估和改善校准的方法、选择合适的决策阈值、增强模型可解释性、识别和减轻偏差以及进行稳健验证的方法。我们还讨论了提高ML模型可及性和进行实际测试的策略。

要点

本教程为临床医生提供了在临床实践中实施机器学习分类模型的全面指南。涵盖的关键领域包括模型校准、阈值选择、可解释性、偏差减轻、验证和实际测试,所有这些对于机器学习模型的临床部署都是必不可少的。遵循这些指导可以帮助临床医生弥合机器学习模型开发与实际应用之间的差距,并提高患者护理效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d85a/12260203/b2212bbc58d9/10.1177_0272989X251343082-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验