文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

半自动化方法用于探究组织样本的空间异质性。

Semi-automated approaches for interrogating spatial heterogeneity of tissue samples.

机构信息

Lunaphore Technologies SA, Tolochenaz, Switzerland.

出版信息

Sci Rep. 2024 Feb 29;14(1):5025. doi: 10.1038/s41598-024-55387-w.


DOI:10.1038/s41598-024-55387-w
PMID:38424144
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10904364/
Abstract

Tissues are spatially orchestrated ecosystems composed of heterogeneous cell populations and non-cellular elements. Tissue components' interactions shape the biological processes that govern homeostasis and disease, thus comprehensive insights into tissues' composition are crucial for understanding their biology. Recently, advancements in the spatial biology field enabled the in-depth analyses of tissue architecture at single-cell resolution, while preserving the structural context. The increasing number of biomarkers analyzed, together with whole tissue imaging, generate datasets approaching several hundreds of gigabytes in size, which are rich sources of valuable knowledge but require investments in infrastructure and resources for extracting quantitative information. The analysis of multiplex whole-tissue images requires extensive training and experience in data analysis. Here, we showcase how a set of open-source tools can allow semi-automated image data extraction to study the spatial composition of tissues with a focus on tumor microenvironment (TME). With the use of Lunaphore COMET platform, we interrogated lung cancer specimens where we examined the expression of 20 biomarkers. Subsequently, the tissue composition was interrogated using an in-house optimized nuclei detection algorithm followed by a newly developed image artifact exclusion approach. Thereafter, the data was processed using several publicly available tools, highlighting the compatibility of COMET-derived data with currently available image analysis frameworks. In summary, we showcased an innovative semi-automated workflow that highlights the ease of adoption of multiplex imaging to explore TME composition at single-cell resolution using a simple slide in, data out approach. Our workflow is easily transferrable to various cohorts of specimens to provide a toolset for spatial cellular dissection of the tissue composition.

摘要

组织是由异质细胞群体和非细胞成分组成的空间协调生态系统。组织成分的相互作用塑造了调节体内平衡和疾病的生物学过程,因此全面了解组织的组成对于理解其生物学至关重要。最近,空间生物学领域的进步使我们能够以单细胞分辨率深入分析组织架构,同时保留结构背景。分析的生物标志物数量不断增加,加上整个组织成像,生成的数据集大小接近数百千兆字节,这些数据集是有价值知识的丰富来源,但需要在基础设施和资源方面进行投资,以提取定量信息。多色全组织图像的分析需要在数据分析方面进行广泛的培训和经验。在这里,我们展示了一组开源工具如何允许半自动图像数据提取,以研究组织的空间组成,重点是肿瘤微环境 (TME)。我们使用 Lunaphore COMET 平台研究了肺癌标本,在这些标本中我们检查了 20 种生物标志物的表达。随后,使用内部优化的核检测算法和新开发的图像伪影排除方法来检查组织组成。然后,使用几个公开可用的工具对数据进行处理,突出了 COMET 衍生数据与当前可用的图像分析框架的兼容性。总之,我们展示了一种创新的半自动工作流程,该流程突出了采用多重成像以简单的幻灯片输入、数据输出方法探索 TME 组成的易用性,分辨率达到单细胞水平。我们的工作流程易于转移到各种标本队列中,为组织组成的空间细胞剖析提供了一个工具集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe21/10904364/0d9b32475c8f/41598_2024_55387_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe21/10904364/44c144a40e08/41598_2024_55387_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe21/10904364/9abeef5dea99/41598_2024_55387_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe21/10904364/8d88ad7c3780/41598_2024_55387_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe21/10904364/6fe98dbf87e4/41598_2024_55387_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe21/10904364/0d9b32475c8f/41598_2024_55387_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe21/10904364/44c144a40e08/41598_2024_55387_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe21/10904364/9abeef5dea99/41598_2024_55387_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe21/10904364/8d88ad7c3780/41598_2024_55387_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe21/10904364/6fe98dbf87e4/41598_2024_55387_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe21/10904364/0d9b32475c8f/41598_2024_55387_Fig5_HTML.jpg

相似文献

[1]
Semi-automated approaches for interrogating spatial heterogeneity of tissue samples.

Sci Rep. 2024-2-29

[2]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[3]
Synplex: In Silico Modeling of the Tumor Microenvironment From Multiplex Images.

IEEE Trans Med Imaging. 2023-10

[4]
Identification of distinct immune landscapes using an automated nine-color multiplex immunofluorescence staining panel and image analysis in paraffin tumor tissues.

Sci Rep. 2021-2-25

[5]
An end-to-end workflow for multiplexed image processing and analysis.

Nat Protoc. 2023-11

[6]
Quantitative Spatial Profiling of Immune Populations in Pancreatic Ductal Adenocarcinoma Reveals Tumor Microenvironment Heterogeneity and Prognostic Biomarkers.

Cancer Res. 2022-12-2

[7]
Multiplex immunofluorescence staining and image analysis assay for diffuse large B cell lymphoma.

J Immunol Methods. 2019-11-26

[8]
A Methodology for Texture Feature-based Quality Assessment in Nucleus Segmentation of Histopathology Image.

J Pathol Inform. 2017-9-7

[9]
SpatialCells: automated profiling of tumor microenvironments with spatially resolved multiplexed single-cell data.

Brief Bioinform. 2024-3-27

[10]
Computational solutions for spatial transcriptomics.

Comput Struct Biotechnol J. 2022-9-1

引用本文的文献

[1]
Spatial Multiplexing and Omics.

Nat Rev Methods Primers. 2024

[2]
Spatial mapping of innate lymphoid cells in human lymphoid tissues and lymphoma at single-cell resolution.

Nat Commun. 2025-5-15

[3]
Conserved spatial subtypes and cellular neighborhoods of cancer-associated fibroblasts revealed by single-cell spatial multi-omics.

Cancer Cell. 2025-5-12

[4]
Society for Immunotherapy of Cancer (SITC) consensus statement on essential biomarkers for immunotherapy clinical protocols.

J Immunother Cancer. 2025-3-7

[5]
Making Multiplexed Imaging Flexible: Combining Essential Markers With Established Antibody Panels.

J Histochem Cytochem. 2024

本文引用的文献

[1]
Spatial genomic, biochemical and cellular mechanisms underlying meningioma heterogeneity and evolution.

Nat Genet. 2024-6

[2]
Perivascular NOTCH3+ Stem Cells Drive Meningioma Tumorigenesis and Resistance to Radiotherapy.

Cancer Discov. 2024-10-4

[3]
CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity.

Nat Genet. 2024-1

[4]
Targeting myeloid chemotaxis to reverse prostate cancer therapy resistance.

Nature. 2023-11

[5]
An end-to-end workflow for multiplexed image processing and analysis.

Nat Protoc. 2023-11

[6]
Fully automated sequential immunofluorescence (seqIF) for hyperplex spatial proteomics.

Sci Rep. 2023-10-9

[7]
Super-enhancer hijacking drives ectopic expression of hedgehog pathway ligands in meningiomas.

Nat Commun. 2023-10-7

[8]
The dawn of spatial omics.

Science. 2023-8-4

[9]
High-plex immunofluorescence imaging and traditional histology of the same tissue section for discovering image-based biomarkers.

Nat Cancer. 2023-7

[10]
Spatial Transcriptomics of Intraductal Papillary Mucinous Neoplasms of the Pancreas Identifies NKX6-2 as a Driver of Gastric Differentiation and Indolent Biological Potential.

Cancer Discov. 2023-8-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索