Lunaphore Technologies SA, Tolochenaz, Switzerland.
Sci Rep. 2024 Feb 29;14(1):5025. doi: 10.1038/s41598-024-55387-w.
Tissues are spatially orchestrated ecosystems composed of heterogeneous cell populations and non-cellular elements. Tissue components' interactions shape the biological processes that govern homeostasis and disease, thus comprehensive insights into tissues' composition are crucial for understanding their biology. Recently, advancements in the spatial biology field enabled the in-depth analyses of tissue architecture at single-cell resolution, while preserving the structural context. The increasing number of biomarkers analyzed, together with whole tissue imaging, generate datasets approaching several hundreds of gigabytes in size, which are rich sources of valuable knowledge but require investments in infrastructure and resources for extracting quantitative information. The analysis of multiplex whole-tissue images requires extensive training and experience in data analysis. Here, we showcase how a set of open-source tools can allow semi-automated image data extraction to study the spatial composition of tissues with a focus on tumor microenvironment (TME). With the use of Lunaphore COMET platform, we interrogated lung cancer specimens where we examined the expression of 20 biomarkers. Subsequently, the tissue composition was interrogated using an in-house optimized nuclei detection algorithm followed by a newly developed image artifact exclusion approach. Thereafter, the data was processed using several publicly available tools, highlighting the compatibility of COMET-derived data with currently available image analysis frameworks. In summary, we showcased an innovative semi-automated workflow that highlights the ease of adoption of multiplex imaging to explore TME composition at single-cell resolution using a simple slide in, data out approach. Our workflow is easily transferrable to various cohorts of specimens to provide a toolset for spatial cellular dissection of the tissue composition.
组织是由异质细胞群体和非细胞成分组成的空间协调生态系统。组织成分的相互作用塑造了调节体内平衡和疾病的生物学过程,因此全面了解组织的组成对于理解其生物学至关重要。最近,空间生物学领域的进步使我们能够以单细胞分辨率深入分析组织架构,同时保留结构背景。分析的生物标志物数量不断增加,加上整个组织成像,生成的数据集大小接近数百千兆字节,这些数据集是有价值知识的丰富来源,但需要在基础设施和资源方面进行投资,以提取定量信息。多色全组织图像的分析需要在数据分析方面进行广泛的培训和经验。在这里,我们展示了一组开源工具如何允许半自动图像数据提取,以研究组织的空间组成,重点是肿瘤微环境 (TME)。我们使用 Lunaphore COMET 平台研究了肺癌标本,在这些标本中我们检查了 20 种生物标志物的表达。随后,使用内部优化的核检测算法和新开发的图像伪影排除方法来检查组织组成。然后,使用几个公开可用的工具对数据进行处理,突出了 COMET 衍生数据与当前可用的图像分析框架的兼容性。总之,我们展示了一种创新的半自动工作流程,该流程突出了采用多重成像以简单的幻灯片输入、数据输出方法探索 TME 组成的易用性,分辨率达到单细胞水平。我们的工作流程易于转移到各种标本队列中,为组织组成的空间细胞剖析提供了一个工具集。
Cochrane Database Syst Rev. 2022-2-1
IEEE Trans Med Imaging. 2023-10
Nat Protoc. 2023-11
J Immunol Methods. 2019-11-26
Comput Struct Biotechnol J. 2022-9-1
Nat Rev Methods Primers. 2024
J Histochem Cytochem. 2024
Cancer Discov. 2024-10-4
Nat Protoc. 2023-11
Science. 2023-8-4