Sevim Büşra, Güneş Altuntaş Evrim
Ankara University Biotechnology Institute, Ankara, Turkey.
Probiotics Antimicrob Proteins. 2025 Jun;17(3):1739-1753. doi: 10.1007/s12602-024-10225-3. Epub 2024 Mar 1.
Pediocin and analogous bacteriocins, valued for thermal stability, serve as versatile antimicrobials in the food sector. Improving their resilience at high temperatures and deriving derivatives not only benefit food production but also offer broad-spectrum antimicrobial potential in pharmaceuticals, spanning treatments for peptic ulcers, women's health, and novel anticancer agents. The study aims to create mutant peptides capable of establishing a third disulfide bond or enhanced through cysteine substitutions. This involves introducing additional Cys residues into the inherent structure of pediocin PA-1 to facilitate disulfide bond formation. Five mutants (Mut 1-5) were systematically generated with double Cys substitutions and assessed for thermal stability through MD simulations across temperatures (298-394 K). The most robust mutants (Mut 1, Mut 4-5) underwent extended analysis via MD simulations, comparing their structural stability, secondary structure, and surface accessibility to the reference Pediocin PA-1 molecule. This comprehensive assessment aims to understand how Cys substitutions influence disulfide bonds and the overall thermal stability of the mutant peptides. In silico analysis indicated that Mut 1 and Mut 5, along with the reference structure, lose their helical structure and one natural disulfide bond at high temperatures, and may impacting antimicrobial activity. Conversely, Mut 4 retained its helical structure and exhibited thermal stability similar to Pediocin PA-1. Pending further experimental validation, this study implies Mut 4 may have high stability and exceptional resistance to high temperatures, potentially serving as an effective antimicrobial alternative.
植物乳杆菌素及类似的细菌素因其热稳定性而受到重视,在食品领域作为多功能抗菌剂发挥作用。提高它们在高温下的稳定性并衍生出其衍生物,不仅有益于食品生产,还在制药领域具有广谱抗菌潜力,涵盖消化性溃疡治疗、女性健康以及新型抗癌药物等方面。该研究旨在创造能够形成第三个二硫键或通过半胱氨酸取代得到增强的突变肽。这涉及将额外的半胱氨酸残基引入植物乳杆菌素PA - 1的固有结构中以促进二硫键的形成。通过双半胱氨酸取代系统地产生了五个突变体(突变体1 - 5),并通过分子动力学模拟在298 - 394 K的温度范围内评估其热稳定性。对最稳定的突变体(突变体1、突变体4 - 5)通过分子动力学模拟进行了扩展分析,将它们的结构稳定性、二级结构以及表面可及性与参考植物乳杆菌素PA - 1分子进行比较。这种全面评估旨在了解半胱氨酸取代如何影响二硫键以及突变肽的整体热稳定性。计算机模拟分析表明,突变体1和突变体5与参考结构一样,在高温下失去其螺旋结构和一个天然二硫键,这可能会影响抗菌活性。相反,突变体4保留了其螺旋结构,并表现出与植物乳杆菌素PA - 1相似的热稳定性。在进一步的实验验证之前,该研究表明突变体4可能具有高稳定性和出色的耐高温性,有可能成为一种有效的抗菌替代品。