Suppr超能文献

基于计算机分析乳酸菌细菌素对抗 SARS-CoV-2 的作用

In Silico Analysis of Bacteriocins from Lactic Acid Bacteria Against SARS-CoV-2.

机构信息

Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey.

Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey.

出版信息

Probiotics Antimicrob Proteins. 2023 Feb;15(1):17-29. doi: 10.1007/s12602-021-09879-0. Epub 2021 Nov 27.

Abstract

The COVID-19 pandemic caused by a novel coronavirus (SARS-CoV-2) is a serious health concern in the twenty-first century for scientists, health workers, and all humans. The absence of specific biotherapeutics requires new strategies to prevent the spread and prophylaxis of the novel virus and its variants. The SARS-CoV-2 virus shows pathogenesis by entering the host cells via spike protein and Angiotensin-Converting Enzyme 2 receptor protein. Thus, the present study aims to compute the binding energies between a wide range of bacteriocins with receptor-binding domain (RBD) on spike proteins of wild type (WT) and beta variant (lineage B.1.351). Molecular docking analyses were performed to evaluate binding energies. Upon achieving the best bio-peptides with the highest docking scores, further molecular dynamics (MD) simulations were performed to validate the structure and interaction stability. Protein-protein docking of the chosen 22 biopeptides with WT-RBD showed docking scores lower than -7.9 kcal/mol. Pediocin PA-1 and salivaricin P showed the lowest (best) docking scores of - 12 kcal/mol. Pediocin PA-1, salivaricin B, and salivaricin P showed a remarkable increase in the double mutant's predicted binding affinity with -13.8 kcal/mol, -13.0 kcal/mol, and -12.5 kcal/mol, respectively. Also, a better predicted binding affinity of pediocin PA-1 and salivaricin B against triple mutant was observed compared to the WT. Thus, pediocin PA-1 binds stronger to mutants of the RBD, particularly to double and triple mutants. Salivaricin B showed a better predicted binding affinity towards triple mutant compared to WT, showing that it might be another bacteriocin with potential activity against the SARS-CoV-2 beta variant. Overall, pediocin PA-1, salivaricin P, and salivaricin B are the most promising candidates for inhibiting SARS-CoV-2 (including lineage B.1.351) entrance into the human cells. These bacteriocins derived from lactic acid bacteria hold promising potential for paving an alternative way for treatment and prophylaxis of WT and beta variants.

摘要

由新型冠状病毒(SARS-CoV-2)引起的 COVID-19 大流行是二十一世纪科学家、卫生工作者和全人类面临的严重健康问题。由于缺乏特定的生物疗法,需要新的策略来预防新型病毒及其变体的传播和预防。SARS-CoV-2 病毒通过刺突蛋白和血管紧张素转换酶 2 受体蛋白进入宿主细胞而表现出发病机制。因此,本研究旨在计算广泛的细菌素与野生型(WT)和β变体(谱系 B.1.351)刺突蛋白受体结合域(RBD)之间的结合能。进行分子对接分析以评估结合能。在获得具有最高对接得分的最佳生物肽后,进一步进行分子动力学(MD)模拟以验证结构和相互作用稳定性。与 WT-RBD 进行的 22 种选择生物肽的蛋白质-蛋白质对接显示对接得分低于-7.9 kcal/mol。肠球菌素 PA-1 和唾液菌素 P 表现出最低(最佳)的-12 kcal/mol 对接得分。肠球菌素 PA-1、唾液菌素 B 和唾液菌素 P 对双突变体的预测结合亲和力分别显著增加至-13.8 kcal/mol、-13.0 kcal/mol 和-12.5 kcal/mol。此外,与 WT 相比,肠球菌素 PA-1 和唾液菌素 B 对三重突变体的预测结合亲和力更好。因此,肠球菌素 PA-1 与 RBD 的突变体结合更强,特别是与双突变体和三突变体。与 WT 相比,唾液菌素 B 对三重突变体表现出更好的预测结合亲和力,表明它可能是另一种对 SARS-CoV-2 变体具有潜在活性的细菌素。总体而言,肠球菌素 PA-1、唾液菌素 P 和唾液菌素 B 是抑制 SARS-CoV-2(包括谱系 B.1.351)进入人体细胞的最有希望的候选物。这些源自乳酸菌的细菌素为治疗和预防 WT 和变体提供了有希望的替代途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bab/8626284/6acc0403c4e9/12602_2021_9879_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验