Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China; Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing 101149, PR China.
Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
J Infect Public Health. 2024 Apr;17(4):632-641. doi: 10.1016/j.jiph.2024.02.012. Epub 2024 Feb 23.
Traditional methods for monitoring pulmonary tuberculosis (PTB) treatment efficacy lack sensitivity, prompting the exploration of artificial intelligence (AI) to enhance monitoring. This review investigates the application of AI in monitoring anti-tuberculosis (ATTB) treatment, revealing its potential in predicting treatment duration, adverse reactions, outcomes, and drug resistance. It provides important insights into the potential of AI technology to enhance monitoring and management of ATTB treatment. Systematic search across six databases from 2013 to 2023 explored AI in forecasting PTB treatment efficacy. Support vector machine and convolutional neural network excel in treatment duration prediction, while random forest, artificial neural network, and classification and regression tree show promise in forecasting adverse reactions and outcomes. Neural networks and random forest are effective in predicting drug resistance. AI advancements offer improved monitoring strategies, better patient prognosis, and pave the way for future AI research in PTB treatment monitoring.
传统的监测肺结核(PTB)治疗效果的方法缺乏敏感性,促使人们探索人工智能(AI)来增强监测。本综述调查了 AI 在监测抗结核(ATTB)治疗中的应用,揭示了其在预测治疗持续时间、不良反应、结局和耐药性方面的潜力。它为 AI 技术增强 ATTB 治疗监测和管理提供了重要的见解。从 2013 年到 2023 年,对六个数据库进行了系统搜索,探讨了 AI 在预测 PTB 治疗效果中的应用。支持向量机和卷积神经网络在预测治疗持续时间方面表现出色,而随机森林、人工神经网络和分类回归树在预测不良反应和结局方面有一定潜力。神经网络和随机森林在预测耐药性方面效果显著。AI 技术的进步提供了改进的监测策略,更好的患者预后,并为未来 AI 在 PTB 治疗监测中的研究铺平了道路。