文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 CT 和 MRI 的多模态深度学习模型预测肝细胞癌微血管侵犯。

Predicting microvascular invasion in hepatocellular carcinoma with a CT- and MRI-based multimodal deep learning model.

机构信息

Department of Radiology, Jiangmen Central Hospital, 23 Beijie Haibang Street, Jiangmen, People's Republic of China.

Zunyi Medical University, 1 Xiaoyuan Road, Zunyi, People's Republic of China.

出版信息

Abdom Radiol (NY). 2024 May;49(5):1397-1410. doi: 10.1007/s00261-024-04202-1. Epub 2024 Mar 3.


DOI:10.1007/s00261-024-04202-1
PMID:38433144
Abstract

PURPOSE: To investigate the value of a multimodal deep learning (MDL) model based on computed tomography (CT) and magnetic resonance imaging (MRI) for predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC). METHODS: A total of 287 patients with HCC from our institution and 58 patients from another individual institution were included. Among these, 119 patients with only CT data and 116 patients with only MRI data were selected for single-modality deep learning model development, after which select parameters were migrated for MDL model development with transfer learning (TL). In addition, 110 patients with simultaneous CT and MRI data were divided into a training cohort (n = 66) and a validation cohort (n = 44). We input the features extracted from DenseNet121 into an extreme learning machine (ELM) classifier to construct a classification model. RESULTS: The area under the curve (AUC) of the MDL model was 0.844, which was superior to that of the single-phase CT (AUC = 0.706-0.776, P < 0.05), single-sequence MRI (AUC = 0.706-0.717, P < 0.05), single-modality DL model (AUC = 0.722, AUC = 0.731; P < 0.05), clinical (AUC = 0.648, P < 0.05), but not to that of the delay phase (DP) and in-phase (IP) MRI and portal venous phase (PVP) CT models. The MDL model achieved better performance than models described above (P < 0.05). When combined with clinical features, the AUC of the MDL model increased from 0.844 to 0.871. A nomogram, combining deep learning signatures (DLS) and clinical indicators for MDL models, demonstrated a greater overall net gain than the MDL models (P < 0.05). CONCLUSION: The MDL model is a valuable noninvasive technique for preoperatively predicting MVI in HCC.

摘要

目的:研究基于计算机断层扫描(CT)和磁共振成像(MRI)的多模态深度学习(MDL)模型预测肝细胞癌(HCC)微血管侵犯(MVI)的价值。

方法:本研究纳入了来自我们机构的 287 例 HCC 患者和另一机构的 58 例患者。其中,119 例患者仅具有 CT 数据,116 例患者仅具有 MRI 数据,用于开发单模态深度学习模型,然后使用迁移学习(TL)迁移选择参数以开发 MDL 模型。此外,110 例同时具有 CT 和 MRI 数据的患者被分为训练队列(n=66)和验证队列(n=44)。我们将从 DenseNet121 中提取的特征输入到极端学习机(ELM)分类器中,以构建分类模型。

结果:MDL 模型的曲线下面积(AUC)为 0.844,优于单期 CT(AUC=0.706-0.776,P<0.05)、单序列 MRI(AUC=0.706-0.717,P<0.05)、单模态 DL 模型(AUC=0.722,AUC=0.731;P<0.05)和临床模型(AUC=0.648,P<0.05),但不如延迟期(DP)和同相位(IP)MRI 以及门静脉期(PVP)CT 模型。MDL 模型的性能优于上述模型(P<0.05)。当与临床特征相结合时,MDL 模型的 AUC 从 0.844 增加到 0.871。结合深度学习特征(DLS)和 MDL 模型的临床指标的列线图,与 MDL 模型相比具有更大的总体净收益(P<0.05)。

结论:MDL 模型是一种有价值的术前预测 HCC 微血管侵犯的非侵入性技术。

相似文献

[1]
Predicting microvascular invasion in hepatocellular carcinoma with a CT- and MRI-based multimodal deep learning model.

Abdom Radiol (NY). 2024-5

[2]
A novel multimodal deep learning model for preoperative prediction of microvascular invasion and outcome in hepatocellular carcinoma.

Eur J Surg Oncol. 2023-1

[3]
Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT.

Eur Radiol. 2019-2-15

[4]
Clinical prediction of microvascular invasion in hepatocellular carcinoma using an MRI-based graph convolutional network model integrated with nomogram.

Br J Radiol. 2024-5-7

[5]
Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters.

J Cancer Res Clin Oncol. 2021-12

[6]
Deep learning nomogram based on Gd-EOB-DTPA MRI for predicting early recurrence in hepatocellular carcinoma after hepatectomy.

Eur Radiol. 2023-7

[7]
The Value of LI-RADS and Radiomic Features from MRI for Predicting Microvascular Invasion in Hepatocellular Carcinoma within 5 cm.

Acad Radiol. 2024-6

[8]
Multitask deep learning for prediction of microvascular invasion and recurrence-free survival in hepatocellular carcinoma based on MRI images.

Liver Int. 2024-6

[9]
Comparison of MRI and CT for the Prediction of Microvascular Invasion in Solitary Hepatocellular Carcinoma Based on a Non-Radiomics and Radiomics Method: Which Imaging Modality Is Better?

J Magn Reson Imaging. 2021-8

[10]
Deep-learning-based analysis of preoperative MRI predicts microvascular invasion and outcome in hepatocellular carcinoma.

World J Surg Oncol. 2022-6-8

引用本文的文献

[1]
Systematic Review: AI Applications in Liver Imaging with a Focus on Segmentation and Detection.

Life (Basel). 2025-2-8

[2]
A clinical study exploring the prediction of microvascular invasion in hepatocellular carcinoma through the use of combined enhanced CT and MRI radiomics.

PLoS One. 2025-1-28

[3]
Clinical Nomogram Model for Pre-Operative Prediction of Microvascular Invasion of Hepatocellular Carcinoma before Hepatectomy.

Medicina (Kaunas). 2024-8-28

[4]
Surgical Implications for Nonalcoholic Steatohepatitis-Related Hepatocellular Carcinoma.

Cancers (Basel). 2024-8-6

本文引用的文献

[1]
Predicting Microvascular Invasion in Hepatocellular Carcinoma Using CT-based Radiomics Model.

Radiology. 2023-5

[2]
Artificial Intelligence in the Diagnosis of Hepatocellular Carcinoma: A Systematic Review.

J Clin Med. 2022-10-28

[3]
Prediction of Microvascular Invasion in Hepatocellular Carcinoma via Deep Learning: A Multi-Center and Prospective Validation Study.

Cancers (Basel). 2021-5-14

[4]
Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters.

J Cancer Res Clin Oncol. 2021-12

[5]
Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma ≤ 5 cm.

Eur Radiol. 2021-7

[6]
Integrated imaging and molecular analysis to decipher tumor microenvironment in the era of immunotherapy.

Semin Cancer Biol. 2022-9

[7]
Interobserver Variability and Diagnostic Performance of Gadoxetic Acid-enhanced MRI for Predicting Microvascular Invasion in Hepatocellular Carcinoma.

Radiology. 2020-9-29

[8]
Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning.

J Cancer Res Clin Oncol. 2021-3

[9]
Texture analysis on preoperative contrast-enhanced magnetic resonance imaging identifies microvascular invasion in hepatocellular carcinoma.

HPB (Oxford). 2020-11

[10]
Radiomics models for diagnosing microvascular invasion in hepatocellular carcinoma: which model is the best model?

Cancer Imaging. 2019-8-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索