文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用氧等离子体提高聚氨酯在医学应用中的生物相容性及其对细菌粘附增加的负面影响。

Improving Biocompatibility of Polyurethanes Apply in Medicine Using Oxygen Plasma and Its Negative Effect on Increased Bacterial Adhesion.

作者信息

Drożdż Kamil, Gołda-Cępa Monika, Chytrosz-Wróbel Paulina, Kotarba Andrzej, Brzychczy-Włoch Monika

机构信息

Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow 31-121, Poland.

Faculty of Chemistry, Jagiellonian University, Krakow 31-007, Poland.

出版信息

Int J Biomater. 2024 Feb 23;2024:5102603. doi: 10.1155/2024/5102603. eCollection 2024.


DOI:10.1155/2024/5102603
PMID:38434098
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10907100/
Abstract

Polyurethanes (PUs) are versatile polymers used in medical applications due to their high flexibility and fatigue resistance. PUs are widely used for synthetic blood vessels, wound dressings, cannulas, and urinary and cardiovascular catheters. Many scientific reports indicate that surface wettability is crucial for biocompatibility and bacterial adhesion. The use of oxygen plasma to modify PUs is advantageous because of its effectiveness in introducing oxygen-containing functional groups, thereby altering surface wettability. The purpose of this study was to investigate the effect of the modification of the oxygen plasma of polyurethane on its biocompatibility with lung tissue (A549 cell line) and the adhesion of Gram-positive bacteria ( and ). The results showed that the modification of polyurethane by oxygen plasma allowed the introduction of functional groups containing oxygen (-OH and -COOH), which significantly increased its hydrophilicity (change from 105° ± 2° to 9° ± 2°) of PUs. Surface analysis by atomic force microscopy (AFM) showed changes in PU topography (change in maximum height from ∼110.3 nm to ∼32.1 nm). Moreover, biocompatibility studies on A549 cells showed that on the PU-modified surface, the cells exhibited altered morphology (increases in cell surface area and length, and thus reduced circularity) without concomitant effects on cell viability. However, serial dilution and plate count and microscopic methods confirmed that plasma modification significantly increased the adhesion of and bacteria. This study indicate the important role of surface hydrophilicity in biocompatibility and bacterial adhesion, which is important in the design of new medical biomaterials.

摘要

聚氨酯(PUs)是一种用途广泛的聚合物,因其具有高柔韧性和抗疲劳性而被应用于医学领域。聚氨酯广泛用于合成血管、伤口敷料、插管以及泌尿和心血管导管。许多科学报告表明,表面润湿性对于生物相容性和细菌黏附至关重要。使用氧等离子体改性聚氨酯具有优势,因为它能有效引入含氧官能团,从而改变表面润湿性。本研究的目的是探究聚氨酯的氧等离子体改性对其与肺组织(A549细胞系)的生物相容性以及革兰氏阳性菌(和)黏附的影响。结果表明,通过氧等离子体对聚氨酯进行改性可引入含氧官能团(-OH和-COOH),这显著提高了聚氨酯的亲水性(接触角从105°±2°变为9°±2°)。通过原子力显微镜(AFM)进行的表面分析显示聚氨酯的形貌发生了变化(最大高度从约110.3nm变为约32.1nm)。此外,对A549细胞的生物相容性研究表明,在聚氨酯改性表面上,细胞形态发生了改变(细胞表面积和长度增加,从而圆度降低),但对细胞活力没有伴随影响。然而,系列稀释和平板计数以及显微镜方法证实,等离子体改性显著增加了和细菌的黏附。本研究表明表面亲水性在生物相容性和细菌黏附中的重要作用,这在新型医用生物材料的设计中具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e585/10907100/87747ddce9fa/IJBM2024-5102603.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e585/10907100/b0f12dcd90ed/IJBM2024-5102603.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e585/10907100/3f4b9b85868e/IJBM2024-5102603.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e585/10907100/ba0685170323/IJBM2024-5102603.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e585/10907100/c6fb7f365475/IJBM2024-5102603.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e585/10907100/c3cc5cafa222/IJBM2024-5102603.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e585/10907100/6ac9dce6bd03/IJBM2024-5102603.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e585/10907100/7531acfc04bb/IJBM2024-5102603.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e585/10907100/87747ddce9fa/IJBM2024-5102603.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e585/10907100/b0f12dcd90ed/IJBM2024-5102603.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e585/10907100/3f4b9b85868e/IJBM2024-5102603.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e585/10907100/ba0685170323/IJBM2024-5102603.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e585/10907100/c6fb7f365475/IJBM2024-5102603.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e585/10907100/c3cc5cafa222/IJBM2024-5102603.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e585/10907100/6ac9dce6bd03/IJBM2024-5102603.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e585/10907100/7531acfc04bb/IJBM2024-5102603.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e585/10907100/87747ddce9fa/IJBM2024-5102603.008.jpg

相似文献

[1]
Improving Biocompatibility of Polyurethanes Apply in Medicine Using Oxygen Plasma and Its Negative Effect on Increased Bacterial Adhesion.

Int J Biomater. 2024-2-23

[2]
Inhibition of bacterial adhesion and biofilm formation by dual functional textured and nitric oxide releasing surfaces.

Acta Biomater. 2017-3-15

[3]
Blood coagulation response and bacterial adhesion to biomimetic polyurethane biomaterials prepared with surface texturing and nitric oxide release.

Acta Biomater. 2018-11-22

[4]
Influence of non-thermal TiCl4/Ar+O2 plasma-assisted TiOx based coatings on the surface of polypropylene (PP) films for the tailoring of surface properties and cytocompatibility.

Mater Sci Eng C Mater Biol Appl. 2016-5

[5]
A Novel Bilayer Wound Dressing Composed of a Dense Polyurethane/Propolis Membrane and a Biodegradable Polycaprolactone/Gelatin Nanofibrous Scaffold.

Sci Rep. 2020-2-20

[6]
Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties.

Carbohydr Polym. 2014-5-23

[7]
Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system.

Mater Sci Eng C Mater Biol Appl. 2014-10-13

[8]
Probing surface adhesion forces of Enterococcus faecalis to medical-grade polymers using atomic force microscopy.

Langmuir. 2004-5-11

[9]
Adhesion of staphylococci to polyurethane and hydrogel-coated polyurethane catheters assayed by an improved radiolabelling technique.

J Med Microbiol. 1995-8

[10]
Degradation behavior and biocompatibility of PEG/PANI-derived polyurethane co-polymers.

J Biomater Sci Polym Ed. 2010

本文引用的文献

[1]
In Vitro and In Silico Studies of Functionalized Polyurethane Surfaces toward Understanding Biologically Relevant Interactions.

ACS Biomater Sci Eng. 2023-11-13

[2]
Non-thermal atmospheric pressure plasma treatment increases hydrophilicity and promotes cell growth on titanium alloys in vitro.

Sci Rep. 2023-9-8

[3]
Functionalization of graphenic surfaces by oxygen plasma toward enhanced wettability and cell adhesion: experiments corroborated by molecular modelling.

J Mater Chem B. 2023-6-7

[4]
On the State of Graphene Oxide Nanosheet in a Polyurethane Matrix.

Nanomaterials (Basel). 2023-1-30

[5]
Biomedical Polyurethanes for Anti-Cancer Drug Delivery Systems: A Brief, Comprehensive Review.

Int J Mol Sci. 2022-7-25

[6]
Micropatterning of cells via adjusting surface wettability using plasma treatment and graphene oxide deposition.

PLoS One. 2022

[7]
Recent Developments in Blood-Compatible Superhydrophobic Surfaces.

Polymers (Basel). 2022-3-8

[8]
What affects the biocompatibility of polymers?

Adv Colloid Interface Sci. 2021-8

[9]
Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion.

Front Bioeng Biotechnol. 2021-2-12

[10]
Biocompatibility and Physico-Chemical Properties of Highly Porous PLA/HA Scaffolds for Bone Reconstruction.

Polymers (Basel). 2020-12-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索