Suppr超能文献

面部深度伪造检测挑战赛。

The Face Deepfake Detection Challenge.

作者信息

Guarnera Luca, Giudice Oliver, Guarnera Francesco, Ortis Alessandro, Puglisi Giovanni, Paratore Antonino, Bui Linh M Q, Fontani Marco, Coccomini Davide Alessandro, Caldelli Roberto, Falchi Fabrizio, Gennaro Claudio, Messina Nicola, Amato Giuseppe, Perelli Gianpaolo, Concas Sara, Cuccu Carlo, Orrù Giulia, Marcialis Gian Luca, Battiato Sebastiano

机构信息

Department of Mathematics and Computer Science, University of Catania, 95125 Catania, Italy.

Applied Research Team, IT Department, Banca d'Italia, 00044 Rome, Italy.

出版信息

J Imaging. 2022 Sep 28;8(10):263. doi: 10.3390/jimaging8100263.

Abstract

Multimedia data manipulation and forgery has never been easier than today, thanks to the power of Artificial Intelligence (AI). AI-generated fake content, commonly called Deepfakes, have been raising new issues and concerns, but also new challenges for the research community. The Deepfake detection task has become widely addressed, but unfortunately, approaches in the literature suffer from generalization issues. In this paper, the Face Deepfake Detection and Reconstruction Challenge is described. Two different tasks were proposed to the participants: (i) creating a Deepfake detector capable of working in an "in the wild" scenario; (ii) creating a method capable of reconstructing original images from Deepfakes. Real images from CelebA and FFHQ and Deepfake images created by StarGAN, StarGAN-v2, StyleGAN, StyleGAN2, AttGAN and GDWCT were collected for the competition. The winning teams were chosen with respect to the highest classification accuracy value (Task I) and "minimum average distance to Manhattan" (Task II). Deep Learning algorithms, particularly those based on the architecture, achieved the best results in Task I. No winners were proclaimed for Task II. A detailed discussion of teams' proposed methods with corresponding ranking is presented in this paper.

摘要

得益于人工智能(AI)的强大力量,多媒体数据处理与伪造如今变得前所未有的容易。人工智能生成的虚假内容,通常称为深度伪造,引发了新的问题和担忧,但也给研究界带来了新的挑战。深度伪造检测任务已得到广泛关注,但遗憾的是,文献中的方法存在泛化问题。本文描述了面部深度伪造检测与重建挑战赛。向参与者提出了两项不同的任务:(i)创建一个能够在“真实场景”中工作的深度伪造检测器;(ii)创建一种能够从深度伪造图像中重建原始图像的方法。比赛收集了来自CelebA和FFHQ的真实图像以及由StarGAN、StarGAN-v2、StyleGAN、StyleGAN2、AttGAN和GDWCT创建的深度伪造图像。根据最高分类准确率值(任务一)和“到曼哈顿的最小平均距离”(任务二)选出获胜团队。深度学习算法,特别是基于该架构的算法,在任务一中取得了最佳成绩。任务二未宣布获胜者。本文详细讨论了各团队提出的方法及相应排名。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/995e/9605671/4a1d2427defc/jimaging-08-00263-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验