Suppr超能文献

量化分层分类系统中的偏差。

Quantifying Bias in Hierarchical Category Systems.

作者信息

Warburton Katie, Kemp Charles, Xu Yang, Frermann Lea

机构信息

School of Psychological Sciences, University of Melbourne, Melbourne, Australia.

Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.

出版信息

Open Mind (Camb). 2024 Mar 1;8:102-130. doi: 10.1162/opmi_a_00121. eCollection 2024.

Abstract

Categorization is ubiquitous in human cognition and society, and shapes how we perceive and understand the world. Because categories reflect the needs and perspectives of their creators, no category system is entirely objective, and inbuilt biases can have harmful social consequences. Here we propose methods for measuring biases in hierarchical systems of categories, a common form of category organization with multiple levels of abstraction. We illustrate these methods by quantifying the extent to which library classification systems are biased in favour of western concepts and male authors. We analyze a large library data set including more than 3 million books organized into thousands of categories, and find that categories related to religion show greater western bias than do categories related to literature or history, and that books written by men are distributed more broadly across library classification systems than are books written by women. We also find that the Dewey Decimal Classification shows a greater level of bias than does the Library of Congress Classification. Although we focus on library classification as a case study, our methods are general, and can be used to measure biases in both natural and institutional category systems across a range of domains.

摘要

分类在人类认知和社会中无处不在,并塑造着我们感知和理解世界的方式。由于类别反映了其创造者的需求和观点,没有任何类别系统是完全客观的,内在的偏见可能会产生有害的社会后果。在此,我们提出了一些方法来衡量类别层次系统中的偏见,类别层次系统是一种具有多个抽象层次的常见类别组织形式。我们通过量化图书馆分类系统偏向西方概念和男性作者的程度来说明这些方法。我们分析了一个大型图书馆数据集,其中包括300多万本图书,这些图书被分为数千个类别,发现与宗教相关的类别比与文学或历史相关的类别表现出更大的西方偏见,而且男性作者所写的书籍在图书馆分类系统中的分布比女性作者所写的书籍更广泛。我们还发现,杜威十进制分类法比美国国会图书馆分类法表现出更高程度的偏见。虽然我们将图书馆分类作为一个案例研究,但我们的方法具有通用性,可用于衡量一系列领域中自然和机构类别系统中的偏见。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eeb2/10898782/803036b2d2b2/opmi-08-102-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验