Suppr超能文献

作为球体生长的胰腺癌的可逆化学抗性。

Reversible chemoresistance of pancreatic cancer grown as spheroids.

作者信息

Matsushita Yoshihisa, Norris Alexis, Zhong Yi, Begum Asma, Liang Hong, Debeljak Marija, Anders Nicole, Goggins Michael, Rasheed Zeshaan A, Hruban Ralph H, Wolfgang Christopher L, Thompson Elizabeth D, Rudek Michelle A, Liu Jun O, Cope Leslie, Eshleman James R

机构信息

Department of Pathology, The Sol Goldman Pancreatic Cancer Research Centre, Johns Hopkins University, Baltimore, MD, USA.

Department of Oncology, Johns Hopkins University, Baltimore, MD, USA.

出版信息

J Chemother. 2024 Sep 16:1-15. doi: 10.1080/1120009X.2024.2402177.

Abstract

Better models are needed to identify active drugs to treat pancreatic adenocarcinoma (PAC) patients. We used 3D hanging drop cultures to produce spheroids from five PAC cell lines and tested nine FDA-approved drugs in clinical use. All PAC cell lines in 2D culture were sensitive to three drugs (gemcitabine, docetaxel and nab-paclitaxel), however most PAC (4/5) 3D spheroids acquired profound chemoresistance even at 10 µM. In contrast, spheroids retained sensitivity to the investigational drug triptolide, which induced apoptosis. The acquired chemoresistance was also transiently retained when cells were placed back into 2D culture and six genes potentially associated with chemoresistance were identified by microarray and confirmed using quantitative RT-PCR. We demonstrate the additive effect of gemcitabine and erlotinib, from the 12 different combinations of nine drugs tested. This comprehensive study shows spheroids as a useful multicellular model of PAC for drug screening and elucidating the mechanism of chemoresistance.

摘要

需要更好的模型来识别用于治疗胰腺腺癌(PAC)患者的活性药物。我们使用3D悬滴培养法从五种PAC细胞系中生成球体,并测试了九种FDA批准的临床使用药物。二维培养中的所有PAC细胞系对三种药物(吉西他滨、多西他赛和纳米紫杉醇)敏感,然而大多数PAC(4/5)三维球体即使在10μM时也获得了深度化疗耐药性。相比之下,球体对诱导细胞凋亡的研究药物雷公藤内酯醇保持敏感。当细胞重新置于二维培养中时,获得的化疗耐药性也会短暂保留,并且通过微阵列鉴定出六个可能与化疗耐药性相关的基因,并使用定量RT-PCR进行了确认。我们从测试的九种药物的12种不同组合中证明了吉西他滨和厄洛替尼的相加作用。这项全面的研究表明,球体作为PAC的一种有用的多细胞模型,可用于药物筛选和阐明化疗耐药机制。

相似文献

本文引用的文献

9
Cancer statistics, 2023.癌症统计数据,2023 年。
CA Cancer J Clin. 2023 Jan;73(1):17-48. doi: 10.3322/caac.21763.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验