Suppr超能文献

使用来自MIMIC-IV数据库的合成数据集,采用机器学习方法预测机械通气期间耐甲氧西林的阳性筛查结果。

Machine Learning Approach to Predict Positive Screening of Methicillin-Resistant During Mechanical Ventilation Using Synthetic Dataset From MIMIC-IV Database.

作者信息

Hirano Yohei, Shinmoto Keito, Okada Yohei, Suga Kazuhiro, Bombard Jeffrey, Murahata Shogo, Shrestha Manoj, Ocheja Patrick, Tanaka Aiko

机构信息

Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Chiba, Japan.

Department of Internal Medicine, Tokyo bay Ichikawa Urayasu Medical Center, Chiba, Japan.

出版信息

Front Med (Lausanne). 2021 Nov 16;8:694520. doi: 10.3389/fmed.2021.694520. eCollection 2021.

Abstract

Mechanically ventilated patients are susceptible to nosocomial infections such as ventilator-associated pneumonia. To treat ventilated patients with suspected infection, clinicians select appropriate antibiotics. However, decision-making regarding the use of antibiotics for methicillin-resistant (MRSA) is challenging, because of the lack of evidence-supported criteria. This study aims to derive a machine learning model to predict MRSA as a possible pathogen responsible for infection in mechanically ventilated patients. Data were collected from the Medical Information Mart for Intensive Care (MIMIC)-IV database (an openly available database of patients treated at the Beth Israel Deaconess Medical Center in the period 2008-2019). Of 26,409 mechanically ventilated patients, 809 were screened for MRSA during the mechanical ventilation period and included in the study. The outcome was positivity to MRSA on screening, which was highly imbalanced in the dataset, with 93.9% positive outcomes. Therefore, after dividing the dataset into a training set ( = 566) and a test set ( = 243) for validation by stratified random sampling with a 7:3 allocation ratio, synthetic datasets with 50% positive outcomes were created by synthetic minority over-sampling for both sets individually (synthetic training set: = 1,064; synthetic test set: = 456). Using these synthetic datasets, we trained and validated an XGBoost machine learning model using 28 predictor variables for outcome prediction. Model performance was evaluated by area under the receiver operating characteristic (AUROC), sensitivity, specificity, and other statistical measurements. Feature importance was computed by the Gini method. In validation, the XGBoost model demonstrated reliable outcome prediction with an AUROC value of 0.89 [95% confidence interval (CI): 0.83-0.95]. The model showed a high sensitivity of 0.98 [CI: 0.95-0.99], but a low specificity of 0.47 [CI: 0.41-0.54] and a positive predictive value of 0.65 [CI: 0.62-0.68]. Important predictor variables included admission from the emergency department, insertion of arterial lines, prior quinolone use, hemodialysis, and admission to a surgical intensive care unit. We were able to develop an effective machine learning model to predict positive MRSA screening during mechanical ventilation using synthetic datasets, thus encouraging further research to develop a clinically relevant machine learning model for antibiotics stewardship.

摘要

机械通气患者易发生医院感染,如呼吸机相关性肺炎。为治疗疑似感染的机械通气患者,临床医生会选择合适的抗生素。然而,由于缺乏循证标准,对于耐甲氧西林金黄色葡萄球菌(MRSA)感染患者使用抗生素的决策具有挑战性。本研究旨在建立一个机器学习模型,以预测MRSA是否为机械通气患者感染的可能病原体。数据收集自重症监护医学信息数据库(MIMIC)-IV数据库(一个公开可用的数据库,包含2008年至2019年期间在贝斯以色列女执事医疗中心接受治疗的患者信息)。在26409例机械通气患者中,809例在机械通气期间接受了MRSA筛查并纳入研究。研究结果为筛查时MRSA呈阳性,该数据集严重失衡,阳性结果占93.9%。因此,按照7:3的分配比例通过分层随机抽样将数据集分为训练集(n = 566)和测试集(n = 243)进行验证后,分别对两组使用合成少数类过采样技术创建了阳性结果占50%的合成数据集(合成训练集:n = 1064;合成测试集:n = 456)。利用这些合成数据集,我们使用28个预测变量训练并验证了一个XGBoost机器学习模型用于结果预测。通过受试者操作特征曲线下面积(AUROC)、敏感性、特异性和其他统计指标评估模型性能。采用基尼方法计算特征重要性。在验证过程中,XGBoost模型显示出可靠的结果预测能力,AUROC值为0.89 [95%置信区间(CI):0.83 - 0.95]。该模型敏感性较高,为0.98 [CI:0.95 - 0.99],但特异性较低,为0.47 [CI:0.41 - 0.54],阳性预测值为0.65 [CI:0.62 - 0.68]。重要的预测变量包括从急诊科入院、插入动脉导管、既往使用喹诺酮类药物、血液透析以及入住外科重症监护病房。我们能够利用合成数据集建立一个有效的机器学习模型来预测机械通气期间MRSA筛查呈阳性,从而鼓励进一步开展研究以开发一个用于抗生素管理的临床相关机器学习模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8d2/8635043/71a74e3b915e/fmed-08-694520-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验