Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University Bloomington, Bloomington, Indiana.
Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
Biol Psychiatry. 2024 Sep 1;96(5):390-400. doi: 10.1016/j.biopsych.2024.02.1013. Epub 2024 Mar 5.
Psychomotor disturbances are observed across psychiatric disorders and often manifest as psychomotor slowing, agitation, disorganized behavior, or catatonia. Psychomotor function includes both cognitive and motor components, but the neural circuits driving these subprocesses and how they relate to symptoms have remained elusive for centuries.
We analyzed data from the HCP-EP (Human Connectome Project for Early Psychosis), a multisite study of 125 participants with early psychosis and 58 healthy participants with resting-state functional magnetic resonance imaging and clinical characterization. Psychomotor function was assessed using the 9-hole pegboard task, a timed motor task that engages mechanical and psychomotor components of action, and tasks assessing processing speed and task switching. We used multivariate pattern analysis of whole-connectome data to identify brain correlates of psychomotor function.
We identified discrete brain circuits driving the cognitive and motor components of psychomotor function. In our combined sample of participants with psychosis (n = 89) and healthy control participants (n = 52), the strongest correlates of psychomotor function (pegboard performance) (p < .005) were between a midline cerebellar region and left frontal region and presupplementary motor area. Psychomotor function was correlated with both cerebellar-frontal connectivity (r = 0.33) and cerebellar-presupplementary motor area connectivity (r = 0.27). However, the cognitive component of psychomotor performance (task switching) was correlated only with cerebellar-frontal connectivity (r = 0.19), whereas the motor component (processing speed) was correlated only with cerebellar-presupplementary motor area connectivity (r = 0.15), suggesting distinct circuits driving unique subprocesses of psychomotor function.
We identified cerebellar-cortical circuits that drive distinct subprocesses of psychomotor function. Future studies should probe relationships between cerebellar connectivity and psychomotor performance using neuromodulation.
精神运动障碍在各种精神疾病中都有观察到,通常表现为精神运动迟缓、激越、行为紊乱或紧张症。精神运动功能包括认知和运动两个组成部分,但驱动这些子过程的神经回路以及它们与症状的关系,几个世纪以来一直难以捉摸。
我们分析了来自 HCP-EP(人类连接组计划早期精神病学)的数据,这是一项多中心研究,共纳入 125 名早期精神病患者和 58 名健康对照者,进行静息态功能磁共振成像和临床特征分析。使用 9 孔钉板任务评估精神运动功能,这是一项计时运动任务,涉及机械和运动动作的子过程,以及评估加工速度和任务转换的任务。我们使用全连接组数据的多元模式分析来识别精神运动功能的大脑相关性。
我们确定了驱动精神运动功能认知和运动成分的离散脑回路。在我们的精神病患者(n=89)和健康对照者(n=52)的联合样本中,精神运动功能(钉板表现)的最强相关性(p<.005)存在于中线小脑区域和左侧额叶及辅助运动区之间。精神运动功能与小脑-额叶连接(r=0.33)和小脑-辅助运动区连接(r=0.27)均相关。然而,精神运动表现的认知成分(任务转换)仅与小脑-额叶连接相关(r=0.19),而运动成分(加工速度)仅与小脑-辅助运动区连接相关(r=0.15),提示驱动精神运动功能独特子过程的不同回路。
我们确定了驱动精神运动功能不同子过程的小脑-皮质回路。未来的研究应该使用神经调节来探究小脑连接和精神运动表现之间的关系。