Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024 Jan-Feb;16(1):e1942. doi: 10.1002/wnan.1942.
Cancer presents a formidable challenge, necessitating innovative therapies that maximize effectiveness while minimizing harm to healthy tissues. Nanotechnology has emerged as a transformative force in cancer treatment, particularly through nano-enabled photodynamic therapy (NE-PDT), which leverages precise and targeted interventions. NE-PDT capitalizes on photosensitizers activated by light to generate reactive oxygen species (ROS) that initiate apoptotic pathways in cancer cells. Nanoparticle enhancements optimize this process, improving drug delivery, selectivity, and ROS production within tumors. This review dissects NE-PDT's mechanistic framework, showcasing its potential to harness apoptosis as a potent tool in cancer therapy. Furthermore, the review explores the synergy between NE-PDT and complementary treatments like chemotherapy, immunotherapy, and targeted therapies, highlighting the potential to amplify apoptotic responses, enhance immune recognition of cancer cells, and inhibit resistance mechanisms. Preclinical and clinical advancements in NE-PDT demonstrate its efficacy across various cancer types. Challenges in translating NE-PDT into clinical practice are also addressed, emphasizing the need for optimizing nanoparticle design, refining dosimetry, and ensuring long-term safety. Ultimately, NE-PDT represents a promising approach in cancer therapy, utilizing the intricate mechanisms of apoptosis to address therapeutic hurdles. The review underscores the importance of understanding the interplay between nanoparticles, ROS generation, and apoptotic pathways, contributing to a deeper comprehension of cancer biology and novel therapeutic strategies. As interdisciplinary collaborations continue to thrive, NE-PDT offers hope for effective and targeted cancer interventions, where apoptosis manipulation becomes central to conquering cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
癌症是一个严峻的挑战,需要创新的治疗方法,在最大限度地提高疗效的同时,将对健康组织的伤害降到最低。纳米技术在癌症治疗中已经成为一种变革性的力量,特别是通过纳米增强光动力疗法(NE-PDT),它利用精确和靶向干预。NE-PDT 利用光敏剂在光的激活下产生活性氧物种(ROS),从而引发癌细胞的凋亡途径。纳米颗粒增强作用优化了这一过程,提高了药物在肿瘤内的递送、选择性和 ROS 产生。这篇综述剖析了 NE-PDT 的机制框架,展示了其利用凋亡作为癌症治疗有力工具的潜力。此外,该综述还探讨了 NE-PDT 与化疗、免疫疗法和靶向治疗等互补治疗方法之间的协同作用,强调了放大凋亡反应、增强对癌细胞的免疫识别和抑制耐药机制的潜力。NE-PDT 的临床前和临床进展证明了它在各种癌症类型中的疗效。该综述还探讨了将 NE-PDT 转化为临床实践所面临的挑战,强调了需要优化纳米颗粒设计、细化剂量学和确保长期安全性。最终,NE-PDT 代表了癌症治疗中的一种有前途的方法,它利用凋亡的复杂机制来解决治疗障碍。该综述强调了理解纳米颗粒、ROS 生成和凋亡途径之间相互作用的重要性,有助于深入了解癌症生物学和新的治疗策略。随着跨学科合作的不断发展,NE-PDT 为有效的靶向癌症干预提供了希望,其中凋亡操纵成为攻克癌症的核心。本文属于以下类别:治疗方法和药物发现 > 纳米医学治疗肿瘤疾病。
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024
Int J Mol Sci. 2023-11-29
Int J Mol Sci. 2023-6-30
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019-5-6
Pharm Dev Technol. 2024-3
J Nanobiotechnology. 2021-5-29
Photodiagnosis Photodyn Ther. 2021-12
Pharmaceutics. 2025-4-24
Int J Mol Sci. 2025-4-24
Cell Death Dis. 2025-4-11
Biosensors (Basel). 2025-1-10