Suppr超能文献

人工智能定义的心脏解剖结构提高了杂交灌注成像的风险分层。

AI-Defined Cardiac Anatomy Improves Risk Stratification of Hybrid Perfusion Imaging.

机构信息

Department of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Cardiac Sciences, University of Calgary, Calgary Alberta, Canada.

Department of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Signal and Image Processing Institute, Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA.

出版信息

JACC Cardiovasc Imaging. 2024 Jul;17(7):780-791. doi: 10.1016/j.jcmg.2024.01.006. Epub 2024 Mar 6.

Abstract

BACKGROUND

Computed tomography attenuation correction (CTAC) improves perfusion quantification of hybrid myocardial perfusion imaging by correcting for attenuation artifacts. Artificial intelligence (AI) can automatically measure coronary artery calcium (CAC) from CTAC to improve risk prediction but could potentially derive additional anatomic features.

OBJECTIVES

The authors evaluated AI-based derivation of cardiac anatomy from CTAC and assessed its added prognostic utility.

METHODS

The authors considered consecutive patients without known coronary artery disease who underwent single-photon emission computed tomography/computed tomography (CT) myocardial perfusion imaging at 3 separate centers. Previously validated AI models were used to segment CAC and cardiac structures (left atrium, left ventricle, right atrium, right ventricular volume, and left ventricular [LV] mass) from CTAC. They evaluated associations with major adverse cardiovascular events (MACEs), which included death, myocardial infarction, unstable angina, or revascularization.

RESULTS

In total, 7,613 patients were included with a median age of 64 years. During a median follow-up of 2.4 years (IQR: 1.3-3.4 years), MACEs occurred in 1,045 (13.7%) patients. Fully automated AI processing took an average of 6.2 ± 0.2 seconds for CAC and 15.8 ± 3.2 seconds for cardiac volumes and LV mass. Patients in the highest quartile of LV mass and left atrium, LV, right atrium, and right ventricular volume were at significantly increased risk of MACEs compared to patients in the lowest quartile, with HR ranging from 1.46 to 3.31. The addition of all CT-based volumes and CT-based LV mass improved the continuous net reclassification index by 23.1%.

CONCLUSIONS

AI can automatically derive LV mass and cardiac chamber volumes from CT attenuation imaging, significantly improving cardiovascular risk assessment for hybrid perfusion imaging.

摘要

背景

计算机断层扫描衰减校正(CTAC)通过校正衰减伪影来提高混合心肌灌注成像的灌注定量。人工智能(AI)可以从 CTAC 自动测量冠状动脉钙(CAC),以改善风险预测,但可能会衍生出其他解剖特征。

目的

作者评估了基于 AI 的 CTAC 心脏解剖结构自动推导,并评估了其附加的预后效用。

方法

作者纳入了在 3 个不同中心接受单光子发射计算机断层扫描/计算机断层扫描(CT)心肌灌注成像的连续无已知冠状动脉疾病的患者。使用先前验证的 AI 模型从 CTAC 中分割 CAC 和心脏结构(左心房、左心室、右心房、右心室容积和左心室[LV]质量)。他们评估了与主要不良心血管事件(MACE)的关联,MACE 包括死亡、心肌梗死、不稳定型心绞痛或血运重建。

结果

共纳入 7613 例患者,中位年龄为 64 岁。在中位随访 2.4 年(IQR:1.3-3.4 年)期间,1045 例(13.7%)患者发生 MACE。完全自动化的 AI 处理过程,CAC 平均需要 6.2 ± 0.2 秒,心脏容积和 LV 质量平均需要 15.8 ± 3.2 秒。与最低四分位数的患者相比,LV 质量和左心房、LV、右心房和右心室容积最高四分位数的患者发生 MACE 的风险显著增加,HR 范围为 1.46 至 3.31。所有基于 CT 的容积和基于 CT 的 LV 质量的增加使连续净重新分类指数提高了 23.1%。

结论

AI 可以从 CT 衰减成像自动推导 LV 质量和心脏腔室容积,显著提高混合灌注成像的心血管风险评估。

相似文献

1
AI-Defined Cardiac Anatomy Improves Risk Stratification of Hybrid Perfusion Imaging.
JACC Cardiovasc Imaging. 2024 Jul;17(7):780-791. doi: 10.1016/j.jcmg.2024.01.006. Epub 2024 Mar 6.
4
AI-Quantitative CT Coronary Plaque Features Associate With a Higher Relative Risk in Women: CONFIRM2 Registry.
Circ Cardiovasc Imaging. 2025 Jun;18(6):e018235. doi: 10.1161/CIRCIMAGING.125.018235. Epub 2025 Mar 31.
9
Diagnostic accuracy of static CT perfusion for the detection of myocardial ischemia. A systematic review and meta-analysis.
J Cardiovasc Comput Tomogr. 2016 Nov-Dec;10(6):450-457. doi: 10.1016/j.jcct.2016.09.003. Epub 2016 Oct 15.

引用本文的文献

3
AI-enabled CT-guided end-to-end quantification of total cardiac activity in 18FDG cardiac PET/CT for detection of cardiac sarcoidosis.
J Nucl Cardiol. 2025 Jun;48:102195. doi: 10.1016/j.nuclcard.2025.102195. Epub 2025 Mar 22.
4
Holistic AI analysis of hybrid cardiac perfusion images for mortality prediction.
NPJ Digit Med. 2025 Mar 13;8(1):158. doi: 10.1038/s41746-025-01526-0.
5
Cardiac Metastasis Presenting With ST-Segment Elevation: Correlation With Multimodality Imaging.
JACC Case Rep. 2025 Feb 19;30(4):102949. doi: 10.1016/j.jaccas.2024.102949.
10
The Updated Registry of Fast Myocardial Perfusion Imaging with Next-Generation SPECT (REFINE SPECT 2.0).
J Nucl Med. 2024 Nov 1;65(11):1795-1801. doi: 10.2967/jnumed.124.268292.

本文引用的文献

1
TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images.
Radiol Artif Intell. 2023 Jul 5;5(5):e230024. doi: 10.1148/ryai.230024. eCollection 2023 Sep.
2
Deep Learning of Coronary Calcium Scores From PET/CT Attenuation Maps Accurately Predicts Adverse Cardiovascular Events.
JACC Cardiovasc Imaging. 2023 May;16(5):675-687. doi: 10.1016/j.jcmg.2022.06.006. Epub 2022 Sep 14.
3
4
nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.
Nat Methods. 2021 Feb;18(2):203-211. doi: 10.1038/s41592-020-01008-z. Epub 2020 Dec 7.
6
Sex-specific relationships between patterns of ventricular remodelling and clinical outcomes.
Eur Heart J Cardiovasc Imaging. 2020 Sep 1;21(9):983-990. doi: 10.1093/ehjci/jeaa164.
7
Prognostic significance of previous myocardial infarction and previous revascularization in patients undergoing SPECT MPI.
Int J Cardiol. 2020 Aug 15;313:9-15. doi: 10.1016/j.ijcard.2020.04.012. Epub 2020 Apr 15.
8
Solid-State Detector SPECT Myocardial Perfusion Imaging.
J Nucl Med. 2019 Sep;60(9):1194-1204. doi: 10.2967/jnumed.118.220657. Epub 2019 Aug 2.
9
5-Year Prognostic Value of Quantitative Versus Visual MPI in Subtle Perfusion Defects: Results From REFINE SPECT.
JACC Cardiovasc Imaging. 2020 Mar;13(3):774-785. doi: 10.1016/j.jcmg.2019.02.028. Epub 2019 Jun 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验