Suppr超能文献

合并或集成:多个神经影像学研究的综合分析。

Merging or ensembling: integrative analysis in multiple neuroimaging studies.

机构信息

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.

Department of Statistics, Florida State University, Tallahassee, FL 32306, United States.

出版信息

Biometrics. 2024 Jan 29;80(1). doi: 10.1093/biomtc/ujae003.

Abstract

The aim of this paper is to systematically investigate merging and ensembling methods for spatially varying coefficient mixed effects models (SVCMEM) in order to carry out integrative learning of neuroimaging data obtained from multiple biomedical studies. The "merged" approach involves training a single learning model using a comprehensive dataset that encompasses information from all the studies. Conversely, the "ensemble" approach involves creating a weighted average of distinct learning models, each developed from an individual study. We systematically investigate the prediction accuracy of the merged and ensemble learners under the presence of different degrees of interstudy heterogeneity. Additionally, we establish asymptotic guidelines for making strategic decisions about when to employ either of these models in different scenarios, along with deriving optimal weights for the ensemble learner. To validate our theoretical results, we perform extensive simulation studies. The proposed methodology is also applied to 3 large-scale neuroimaging studies.

摘要

本文旨在系统地研究空间变系数混合效应模型(SVCMEM)的合并和集成方法,以便对来自多个生物医学研究的神经影像学数据进行综合学习。“合并”方法涉及使用包含所有研究信息的综合数据集来训练单个学习模型。相反,“集成”方法涉及创建来自各个研究的不同学习模型的加权平均值。我们系统地研究了在不同程度的研究间异质性存在下,合并和集成学习者的预测准确性。此外,我们还为在不同情况下何时使用这些模型中的任意一个提供了策略性决策的渐近指南,并为集成学习者推导出了最优权重。为了验证我们的理论结果,我们进行了广泛的模拟研究。所提出的方法也应用于 3 个大规模的神经影像学研究。

相似文献

1
Merging or ensembling: integrative analysis in multiple neuroimaging studies.
Biometrics. 2024 Jan 29;80(1). doi: 10.1093/biomtc/ujae003.
2
Super Learner for Survival Data Prediction.
Int J Biostat. 2020 Feb 22. doi: 10.1515/ijb-2019-0065.
4
Hyperspectral inversion of soil organic matter based on improved ensemble learning method.
Spectrochim Acta A Mol Biomol Spectrosc. 2025 Oct 15;339:126302. doi: 10.1016/j.saa.2025.126302. Epub 2025 Apr 27.
5
Optimal ensemble construction for multistudy prediction with applications to mortality estimation.
Stat Med. 2024 Apr 30;43(9):1774-1789. doi: 10.1002/sim.10006. Epub 2024 Feb 23.
6
Tree-Weighting for Multi-Study Ensemble Learners.
Pac Symp Biocomput. 2020;25:451-462.
7
Improving Individual Brain Age Prediction Using an Ensemble Deep Learning Framework.
Front Psychiatry. 2021 Mar 23;12:626677. doi: 10.3389/fpsyt.2021.626677. eCollection 2021.
8
Ensemble of Deep Neural Networks based on Condorcet's Jury Theorem for screening Covid-19 and Pneumonia from radiograph images.
Comput Biol Med. 2022 Oct;149:105979. doi: 10.1016/j.compbiomed.2022.105979. Epub 2022 Aug 25.
9
Ensembling local learners through multimodal perturbation.
IEEE Trans Syst Man Cybern B Cybern. 2005 Aug;35(4):725-35. doi: 10.1109/tsmcb.2005.845396.
10
Single-index varying coefficient model for functional responses.
Biometrics. 2016 Dec;72(4):1275-1284. doi: 10.1111/biom.12526. Epub 2016 Apr 8.

本文引用的文献

1
Statistical Learning Methods for Neuroimaging Data Analysis with Applications.
Annu Rev Biomed Data Sci. 2023 Aug 10;6:73-104. doi: 10.1146/annurev-biodatasci-020722-100353. Epub 2023 Apr 26.
3
Functional hybrid factor regression model for handling heterogeneity in imaging studies.
Biometrika. 2022 Dec;109(4):1133-1148. doi: 10.1093/biomet/asac007.
4
Privacy-preserving harmonization via distributed ComBat.
Neuroimage. 2022 Mar;248:118822. doi: 10.1016/j.neuroimage.2021.118822. Epub 2021 Dec 25.
5
Common genetic variation influencing human white matter microstructure.
Science. 2021 Jun 18;372(6548). doi: 10.1126/science.abf3736.
6
Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data.
Neuroimage. 2020 Oct 15;220:117129. doi: 10.1016/j.neuroimage.2020.117129. Epub 2020 Jul 5.
7
Confound modelling in UK Biobank brain imaging.
Neuroimage. 2021 Jan 1;224:117002. doi: 10.1016/j.neuroimage.2020.117002. Epub 2020 Jun 2.
8
FMEM: Functional Mixed Effects Models for Longitudinal Functional Responses.
Stat Sin. 2019;29(4):2007-2033. doi: 10.5705/ss.202017.0505.
10
CONFOUNDER ADJUSTMENT IN MULTIPLE HYPOTHESIS TESTING.
Ann Stat. 2017 Oct;45(5):1863-1894. doi: 10.1214/16-AOS1511. Epub 2017 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验