Suppr超能文献

通过分布式 ComBat 进行隐私保护的协调。

Privacy-preserving harmonization via distributed ComBat.

机构信息

Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, United States.

Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States.

出版信息

Neuroimage. 2022 Mar;248:118822. doi: 10.1016/j.neuroimage.2021.118822. Epub 2021 Dec 25.

Abstract

Challenges in clinical data sharing and the need to protect data privacy have led to the development and popularization of methods that do not require directly transferring patient data. In neuroimaging, integration of data across multiple institutions also introduces unwanted biases driven by scanner differences. These scanner effects have been shown by several research groups to severely affect downstream analyses. To facilitate the need of removing scanner effects in a distributed data setting, we introduce distributed ComBat, an adaptation of a popular harmonization method for multivariate data that borrows information across features. We present our fast and simple distributed algorithm and show that it yields equivalent results using data from the Alzheimer's Disease Neuroimaging Initiative. Our method enables harmonization while ensuring maximal privacy protection, thus facilitating a broad range of downstream analyses in functional and structural imaging studies.

摘要

临床数据共享的挑战以及对数据隐私保护的需求,促使人们开发并普及了无需直接传输患者数据的方法。在神经影像学中,跨多个机构整合数据也会引入由扫描仪差异引起的不必要偏差。一些研究小组已经证明,这些扫描仪效应会严重影响下游分析。为了满足在分布式数据环境中消除扫描仪效应的需求,我们引入了分布式 ComBat,这是一种对多变量数据的常用协调方法的改编,该方法可以跨特征借用信息。我们提出了快速而简单的分布式算法,并展示了它在使用来自阿尔茨海默病神经影像学倡议的数据时,能够产生等效的结果。我们的方法能够在确保最大隐私保护的同时进行协调,从而促进功能和结构成像研究中广泛的下游分析。

相似文献

1
Privacy-preserving harmonization via distributed ComBat.
Neuroimage. 2022 Mar;248:118822. doi: 10.1016/j.neuroimage.2021.118822. Epub 2021 Dec 25.
3
Facing privacy in neuroimaging: removing facial features degrades performance of image analysis methods.
Eur Radiol. 2020 Feb;30(2):1062-1074. doi: 10.1007/s00330-019-06459-3. Epub 2019 Nov 5.
4
A multi-scanner neuroimaging data harmonization using RAVEL and ComBat.
Neuroimage. 2021 Dec 15;245:118703. doi: 10.1016/j.neuroimage.2021.118703. Epub 2021 Nov 1.
6
ComBat Harmonization: Empirical Bayes versus fully Bayes approaches.
Neuroimage Clin. 2023;39:103472. doi: 10.1016/j.nicl.2023.103472. Epub 2023 Jul 13.
7
Privacy-Preserving Multi-Source Domain Adaptation for Medical Data.
IEEE J Biomed Health Inform. 2023 Feb;27(2):842-853. doi: 10.1109/JBHI.2022.3175071. Epub 2023 Feb 3.
8
Distributed clinical data sharing via dynamic access-control policy transformation.
Int J Med Inform. 2016 May;89:25-31. doi: 10.1016/j.ijmedinf.2016.02.002. Epub 2016 Feb 12.
9
WICOX: Weight-Based Integrated Cox Model for Time-to-Event Data in Distributed Databases Without Data-Sharing.
IEEE J Biomed Health Inform. 2023 Jan;27(1):526-537. doi: 10.1109/JBHI.2022.3218585. Epub 2023 Jan 4.
10
MISPEL: A supervised deep learning harmonization method for multi-scanner neuroimaging data.
Med Image Anal. 2023 Oct;89:102926. doi: 10.1016/j.media.2023.102926. Epub 2023 Aug 9.

引用本文的文献

1
ComBat-Predict enhances generalizability of neuroimaging models to new sites.
bioRxiv. 2025 Aug 26:2025.08.21.671401. doi: 10.1101/2025.08.21.671401.
3
Reliable RNA-seq analysis from FFPE specimens as a means to accelerate cancer-related health disparities research.
PLoS One. 2025 Apr 21;20(4):e0321631. doi: 10.1371/journal.pone.0321631. eCollection 2025.
4
Detection of Epileptogenic Focal Cortical Dysplasia Using Graph Neural Networks: A MELD Study.
JAMA Neurol. 2025 Feb 24;82(4):397-406. doi: 10.1001/jamaneurol.2024.5406.
5
Distributed Harmonization: Federated Clustered Batch Effect Adjustment and Generalization.
KDD. 2024;2024:5105-5115. doi: 10.1145/3637528.3671590. Epub 2024 Aug 24.
8
Merging or ensembling: integrative analysis in multiple neuroimaging studies.
Biometrics. 2024 Jan 29;80(1). doi: 10.1093/biomtc/ujae003.
9
Brain-phenotype predictions can survive across diverse real-world data.
bioRxiv. 2024 Jan 24:2024.01.23.576916. doi: 10.1101/2024.01.23.576916.

本文引用的文献

1
Mitigating site effects in covariance for machine learning in neuroimaging data.
Hum Brain Mapp. 2022 Mar;43(4):1179-1195. doi: 10.1002/hbm.25688. Epub 2021 Dec 14.
2
Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data.
Neuroimage. 2020 Oct 15;220:117129. doi: 10.1016/j.neuroimage.2020.117129. Epub 2020 Jul 5.
3
Learning from local to global: An efficient distributed algorithm for modeling time-to-event data.
J Am Med Inform Assoc. 2020 Jul 1;27(7):1028-1036. doi: 10.1093/jamia/ocaa044.
4
Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan.
Neuroimage. 2020 Mar;208:116450. doi: 10.1016/j.neuroimage.2019.116450. Epub 2019 Dec 9.
6
Identifying reproducible individual differences in childhood functional brain networks: An ABCD study.
Dev Cogn Neurosci. 2019 Dec;40:100706. doi: 10.1016/j.dcn.2019.100706. Epub 2019 Sep 19.
8
Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data.
Hum Brain Mapp. 2018 Nov;39(11):4213-4227. doi: 10.1002/hbm.24241. Epub 2018 Jul 1.
9
Pretreatment and early-treatment cortical thickness is associated with SSRI treatment response in major depressive disorder.
Neuropsychopharmacology. 2018 Oct;43(11):2221-2230. doi: 10.1038/s41386-018-0122-9. Epub 2018 Jun 19.
10
Harmonization of cortical thickness measurements across scanners and sites.
Neuroimage. 2018 Feb 15;167:104-120. doi: 10.1016/j.neuroimage.2017.11.024. Epub 2017 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验