Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, United States.
Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States.
Neuroimage. 2022 Mar;248:118822. doi: 10.1016/j.neuroimage.2021.118822. Epub 2021 Dec 25.
Challenges in clinical data sharing and the need to protect data privacy have led to the development and popularization of methods that do not require directly transferring patient data. In neuroimaging, integration of data across multiple institutions also introduces unwanted biases driven by scanner differences. These scanner effects have been shown by several research groups to severely affect downstream analyses. To facilitate the need of removing scanner effects in a distributed data setting, we introduce distributed ComBat, an adaptation of a popular harmonization method for multivariate data that borrows information across features. We present our fast and simple distributed algorithm and show that it yields equivalent results using data from the Alzheimer's Disease Neuroimaging Initiative. Our method enables harmonization while ensuring maximal privacy protection, thus facilitating a broad range of downstream analyses in functional and structural imaging studies.
临床数据共享的挑战以及对数据隐私保护的需求,促使人们开发并普及了无需直接传输患者数据的方法。在神经影像学中,跨多个机构整合数据也会引入由扫描仪差异引起的不必要偏差。一些研究小组已经证明,这些扫描仪效应会严重影响下游分析。为了满足在分布式数据环境中消除扫描仪效应的需求,我们引入了分布式 ComBat,这是一种对多变量数据的常用协调方法的改编,该方法可以跨特征借用信息。我们提出了快速而简单的分布式算法,并展示了它在使用来自阿尔茨海默病神经影像学倡议的数据时,能够产生等效的结果。我们的方法能够在确保最大隐私保护的同时进行协调,从而促进功能和结构成像研究中广泛的下游分析。