Suppr超能文献

CBCT图像中下颌管的二维、2.5维和三维分割网络比较:基于公共数据集和外部数据集的研究

Comparison of 2D, 2.5D, and 3D segmentation networks for mandibular canals in CBCT images: a study on public and external datasets.

作者信息

Yang Su, Jeong Jong Soo, Song Dahyun, Han Ji Yong, Lim Sang-Heon, Kim Sujeong, Yoo Ji-Yong, Kim Jun-Min, Kim Jo-Eun, Huh Kyung-Hoe, Lee Sam-Sun, Heo Min-Suk, Yi Won-Jin

机构信息

Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea.

Department of Dentistry, School of Dentistry, Seoul National University, Seoul, 08826, South Korea.

出版信息

BMC Oral Health. 2025 Jul 8;25(1):1126. doi: 10.1186/s12903-025-06483-4.

Abstract

The purpose of this study was to compare the performances of 2D, 2.5D, and 3D CNN-based segmentation networks, along with a 3D vision transformer-based segmentation network, for segmenting mandibular canals (MCs) on the public and external CBCT datasets under the same GPU memory capacity. We also performed ablation studies for an image-cropping (IC) technique and segmentation loss functions. 3D-UNet showed the highest segmentation performance for the MC than those of 2D and 2.5D segmentation networks on public test datasets, achieving 0.569 ± 0.107, 0.719 ± 0.092, 0.664 ± 0.131, and 0.812 ± 0.095 in terms of JI, DSC, PR, and RC, respectively. On the external test dataset, 3D-UNet achieved 0.564 ± 0.092, 0.716 ± 0.081, 0.812 ± 0.087, and 0.652 ± 0.103 in terms of JI, DSC, PR, and RC, respectively. The IC technique and multi-planar Dice loss improved the boundary details and structural connectivity of the MC from the mental foramen to the mandibular foramen. The 3D-UNet demonstrated superior segmentation performance for the MC by learning 3D volumetric context information for the entire MC in the CBCT volume.

摘要

本研究的目的是在相同GPU内存容量下,比较基于二维(2D)、2.5D和三维(3D)卷积神经网络(CNN)的分割网络以及基于3D视觉变换器的分割网络在公共和外部锥束计算机断层扫描(CBCT)数据集上分割下颌管(MCs)的性能。我们还对图像裁剪(IC)技术和分割损失函数进行了消融研究。在公共测试数据集上,3D U-Net在MC分割方面表现出比2D和2.5D分割网络更高的性能,其交并比(JI)、骰子相似系数(DSC)、精确率(PR)和召回率(RC)分别达到0.569±0.107、0.719±0.092、0.664±0.131和0.812±0.095。在外部测试数据集上,3D U-Net的JI、DSC、PR和RC分别达到0.564±0.092、0.716±0.081、0.812±0.087和0.652±0.103。IC技术和多平面骰子损失改善了从颏孔到下颌孔的MC边界细节和结构连通性。3D U-Net通过学习CBCT体积中整个MC的3D体积上下文信息,在MC分割方面表现出卓越的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验