Suppr超能文献

CBCT图像中下颌管的二维、2.5维和三维分割网络比较:基于公共数据集和外部数据集的研究

Comparison of 2D, 2.5D, and 3D segmentation networks for mandibular canals in CBCT images: a study on public and external datasets.

作者信息

Yang Su, Jeong Jong Soo, Song Dahyun, Han Ji Yong, Lim Sang-Heon, Kim Sujeong, Yoo Ji-Yong, Kim Jun-Min, Kim Jo-Eun, Huh Kyung-Hoe, Lee Sam-Sun, Heo Min-Suk, Yi Won-Jin

机构信息

Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea.

Department of Dentistry, School of Dentistry, Seoul National University, Seoul, 08826, South Korea.

出版信息

BMC Oral Health. 2025 Jul 8;25(1):1126. doi: 10.1186/s12903-025-06483-4.

Abstract

The purpose of this study was to compare the performances of 2D, 2.5D, and 3D CNN-based segmentation networks, along with a 3D vision transformer-based segmentation network, for segmenting mandibular canals (MCs) on the public and external CBCT datasets under the same GPU memory capacity. We also performed ablation studies for an image-cropping (IC) technique and segmentation loss functions. 3D-UNet showed the highest segmentation performance for the MC than those of 2D and 2.5D segmentation networks on public test datasets, achieving 0.569 ± 0.107, 0.719 ± 0.092, 0.664 ± 0.131, and 0.812 ± 0.095 in terms of JI, DSC, PR, and RC, respectively. On the external test dataset, 3D-UNet achieved 0.564 ± 0.092, 0.716 ± 0.081, 0.812 ± 0.087, and 0.652 ± 0.103 in terms of JI, DSC, PR, and RC, respectively. The IC technique and multi-planar Dice loss improved the boundary details and structural connectivity of the MC from the mental foramen to the mandibular foramen. The 3D-UNet demonstrated superior segmentation performance for the MC by learning 3D volumetric context information for the entire MC in the CBCT volume.

摘要

本研究的目的是在相同GPU内存容量下,比较基于二维(2D)、2.5D和三维(3D)卷积神经网络(CNN)的分割网络以及基于3D视觉变换器的分割网络在公共和外部锥束计算机断层扫描(CBCT)数据集上分割下颌管(MCs)的性能。我们还对图像裁剪(IC)技术和分割损失函数进行了消融研究。在公共测试数据集上,3D U-Net在MC分割方面表现出比2D和2.5D分割网络更高的性能,其交并比(JI)、骰子相似系数(DSC)、精确率(PR)和召回率(RC)分别达到0.569±0.107、0.719±0.092、0.664±0.131和0.812±0.095。在外部测试数据集上,3D U-Net的JI、DSC、PR和RC分别达到0.564±0.092、0.716±0.081、0.812±0.087和0.652±0.103。IC技术和多平面骰子损失改善了从颏孔到下颌孔的MC边界细节和结构连通性。3D U-Net通过学习CBCT体积中整个MC的3D体积上下文信息,在MC分割方面表现出卓越的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验