Arad Neda, Paredes-Montero Jorge R, Mondal Mosharrof Hossain, Ponvert Nathaniel, Brown Judith K
School of Plant Sciences, The University of Arizona, Tucson, AZ, United States.
Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Guayas, Ecuador.
Front Insect Sci. 2023 Oct 18;3:1283334. doi: 10.3389/finsc.2023.1283334. eCollection 2023.
The causal agent of zebra chip of potato and vein-greening diseases of tomato is " Liberibacter solanacearum" (CLso), a fastidious bacterium transmitted by the potato psyllid. In the absence of disease-resistant cultivars, disease management has relied on minimizing vector population size to reduce CLso transmission, which requires frequent insecticide applications. There is growing interest in the use of RNA interference (RNAi) technology to supplant traditional insecticides with biopesticides. This requires knowledge of genes essential for insect livelihood whose knockdown leads to significant mortality or other phenotypes. Such candidate genes can be evaluated by reverse genetics approaches to further corroborate predicted gene function.
Here, five potato psyllid genes involved in sugar homeostasis in the potato psyllid gut, α-glucosidase1 (), aquaporin2 (), facilitated trehalose transporter1 (), Trehalase1 (), and Trehalase2 (), were investigated as candidates for effective gene silencing. Potato psyllid dsRNAs were designed to optimize knockdown of gene targets. Third instar PoP nymphs were given a 48-hr ingestion-access period (IAP) on individual or groups of dsRNA in 20% sucrose. Mortality was recorded 0, 3, 5, 7, and 9 days post-IAP. Gene knockdown was analyzed 9 days post-IAP by quantitative real-time reverse-transcriptase polymerase chain reaction amplification.
The individual or stacked dsRNA combinations resulted in 20-60% and 20-40% knockdown, respectively, while subsequent psyllid mortality ranged from 20-40% to >60% for single and stacked dsRNA combinations, respectively. Reverse genetics analysis showed that simultaneous knockdown of the five selected candidate genes with predicted functions in pathways involved in sugar-homeostasis, metabolism, and -transport yielded the highest mortality, when compared with single or combinations of targets.
Results confirmed the functions afforded by psyllid gut genes responsible for osmotic homeostasis and sugar metabolism/transport are essential for livelihood, identifying them as potentially lucrative RNAi biopesticide targets and highlighted the translational relevance of targeting multiple nodes in a physiological pathway simultaneously.
马铃薯斑马薯片病和番茄叶脉绿化病的病原体是“茄科韧皮杆菌”(CLso),这是一种由马铃薯木虱传播的苛求菌。在缺乏抗病品种的情况下,病害管理依赖于尽量减少传毒介体种群数量以减少CLso传播,这需要频繁施用杀虫剂。人们越来越关注使用RNA干扰(RNAi)技术用生物农药取代传统杀虫剂。这需要了解对昆虫生存至关重要的基因,其敲低会导致显著的死亡率或其他表型。此类候选基因可通过反向遗传学方法进行评估,以进一步证实预测的基因功能。
在此,研究了马铃薯木虱肠道中参与糖稳态的五个马铃薯木虱基因,即α-葡萄糖苷酶1()、水通道蛋白2()、易化型海藻糖转运蛋白1()、海藻糖酶1()和海藻糖酶2(),作为有效基因沉默的候选基因。设计了马铃薯木虱双链RNA以优化基因靶点的敲低。将三龄若虫置于含有20%蔗糖的单条或多条双链RNA上,给予48小时的摄食接触期(IAP)。在IAP后0、3、5、7和9天记录死亡率。在IAP后9天通过定量实时逆转录聚合酶链反应扩增分析基因敲低情况。
单个或堆叠的双链RNA组合分别导致20%-60%和20%-40%的敲低,而随后木虱的死亡率对于单个和堆叠的双链RNA组合分别为20%-40%至>60%。反向遗传学分析表明,与单个或组合靶点相比,同时敲低五个在糖稳态、代谢和转运途径中具有预测功能的选定候选基因导致了最高的死亡率。
结果证实了木虱肠道中负责渗透稳态和糖代谢/转运的基因所提供的功能对其生存至关重要,将它们确定为潜在的有利可图的RNAi生物农药靶点,并强调了同时靶向生理途径中的多个节点的转化相关性。