Delort Alexandre, Cottone Grazia, Malliavin Thérèse E, Müller Martin Michael
Université de Lorraine, CNRS, LPCT, 57000 Metz, France.
Department of Physics and Chemistry-Emilio Segré, University of Palermo, 90128 Palermo, Italy.
Int J Mol Sci. 2024 Feb 20;25(5):2481. doi: 10.3390/ijms25052481.
The toxicity of botulinum multi-domain neurotoxins (BoNTs) arises from a sequence of molecular events, in which the translocation of the catalytic domain through the membrane of a neurotransmitter vesicle plays a key role. A recent structural study of the translocation domain of BoNTs suggests that the interaction with the membrane is driven by the transition of an α helical switch towards a β hairpin. Atomistic simulations in conjunction with the mesoscopic model are used to investigate the consequences of this proposition for the toxin-membrane interaction. The conformational mobilities of the domain, as well as the effect of the membrane, implicitly examined by comparing water and water-ethanol solvents, lead to the conclusion that the transition of the switch modifies the internal dynamics and the effect of membrane hydrophobicity on the whole protein. The central two α helices, helix 1 and helix 2, forming two coiled-coil motifs, are analyzed using the model, in which the initial deformation of the membrane by the protein is caused by the presence of local torques arising from asymmetric positions of hydrophobic residues. Different torque distributions are observed depending on the switch conformations and permit an origin for the mechanism opening the membrane to be proposed.
肉毒杆菌多结构域神经毒素(BoNTs)的毒性源于一系列分子事件,其中催化结构域通过神经递质囊泡膜的转位起着关键作用。最近对BoNTs转位结构域的结构研究表明,与膜的相互作用是由α螺旋开关向β发夹的转变驱动的。结合介观模型进行的原子模拟用于研究这一命题对毒素 - 膜相互作用的影响。通过比较水和水 - 乙醇溶剂隐含地研究了该结构域的构象迁移率以及膜的影响,得出结论:开关的转变改变了内部动力学以及膜疏水性对整个蛋白质的影响。使用该模型分析了形成两个卷曲螺旋基序的中央两个α螺旋,即螺旋1和螺旋2,其中蛋白质对膜的初始变形是由疏水残基不对称位置产生的局部扭矩引起的。根据开关构象观察到不同的扭矩分布,并提出了膜开放机制的起源。