Suppr超能文献

基于深度学习的无人机图像杂草检测——高端与低成本多光谱传感器的比较

Weed Detection from Unmanned Aerial Vehicle Imagery Using Deep Learning-A Comparison between High-End and Low-Cost Multispectral Sensors.

作者信息

Seiche Anna Teresa, Wittstruck Lucas, Jarmer Thomas

机构信息

Institute of Computer Science, Osnabrück University, 49090 Osnabrück, Germany.

出版信息

Sensors (Basel). 2024 Feb 28;24(5):1544. doi: 10.3390/s24051544.

Abstract

In order to meet the increasing demand for crops under challenging climate conditions, efficient and sustainable cultivation strategies are becoming essential in agriculture. Targeted herbicide use reduces environmental pollution and effectively controls weeds as a major cause of yield reduction. The key requirement is a reliable weed detection system that is accessible to a wide range of end users. This research paper introduces a self-built, low-cost, multispectral camera system and evaluates it against the high-end MicaSense Altum system. Pixel-based weed and crop classification was performed on UAV datasets collected with both sensors in maize using a U-Net. The training and testing data were generated via an index-based thresholding approach followed by annotation. As a result, the F1-score for the weed class reached 82% on the Altum system and 76% on the low-cost system, with recall values of 75% and 68%, respectively. Misclassifications occurred on the low-cost system images for small weeds and overlaps, with minor oversegmentation. However, with a precision of 90%, the results show great potential for application in automated weed control. The proposed system thereby enables sustainable precision farming for the general public. In future research, its spectral properties, as well as its use on different crops with real-time on-board processing, should be further investigated.

摘要

为了在具有挑战性的气候条件下满足对农作物日益增长的需求,高效且可持续的种植策略在农业中变得至关重要。有针对性地使用除草剂可减少环境污染,并有效控制作为产量降低主要原因的杂草。关键要求是要有一个可供广大终端用户使用的可靠杂草检测系统。本研究论文介绍了一种自行构建的低成本多光谱相机系统,并将其与高端的MicaSense Altum系统进行了评估。使用U-Net对在玉米田中使用这两种传感器收集的无人机数据集进行了基于像素的杂草和作物分类。训练和测试数据通过基于指数的阈值处理方法生成,随后进行标注。结果,在Altum系统上杂草类别的F1分数达到82%,在低成本系统上为76%,召回值分别为75%和68%。在低成本系统图像上,对于小杂草和重叠部分出现了误分类,存在轻微的过分割现象。然而,精度达到90%,结果显示出在自动杂草控制中应用的巨大潜力。所提出的系统从而为普通大众实现了可持续精准农业。在未来的研究中,应进一步研究其光谱特性,以及在不同作物上进行实时机载处理的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e48/10934312/e45ad4e3e97f/sensors-24-01544-g0A1.jpg

相似文献

2
Identification and Comprehensive Evaluation of Resistant Weeds Using Unmanned Aerial Vehicle-Based Multispectral Imagery.
Front Plant Sci. 2022 Jul 5;13:938604. doi: 10.3389/fpls.2022.938604. eCollection 2022.
3
Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images.
PLoS One. 2013 Oct 11;8(10):e77151. doi: 10.1371/journal.pone.0077151. eCollection 2013.
4
A novel semi-supervised framework for UAV based crop/weed classification.
PLoS One. 2021 May 10;16(5):e0251008. doi: 10.1371/journal.pone.0251008. eCollection 2021.
5
Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management.
PLoS One. 2013;8(3):e58210. doi: 10.1371/journal.pone.0058210. Epub 2013 Mar 6.
6
Development of a Light-Weight Unmanned Aerial Vehicle for Precision Agriculture.
Sensors (Basel). 2021 Jun 28;21(13):4417. doi: 10.3390/s21134417.
8
Weed detection in soybean fields using improved YOLOv7 and evaluating herbicide reduction efficacy.
Front Plant Sci. 2024 Jan 11;14:1284338. doi: 10.3389/fpls.2023.1284338. eCollection 2023.
9
Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.
Sensors (Basel). 2015 Aug 12;15(8):19688-708. doi: 10.3390/s150819688.

引用本文的文献

1
HierbaNetV1: a novel feature extraction framework for deep learning-based weed identification.
PeerJ Comput Sci. 2024 Nov 22;10:e2518. doi: 10.7717/peerj-cs.2518. eCollection 2024.

本文引用的文献

1
Improved weed mapping in corn fields by combining UAV-based spectral, textural, structural, and thermal measurements.
Pest Manag Sci. 2023 Jul;79(7):2591-2602. doi: 10.1002/ps.7443. Epub 2023 Mar 21.
2
Review of Weed Detection Methods Based on Computer Vision.
Sensors (Basel). 2021 May 24;21(11):3647. doi: 10.3390/s21113647.
3
High Speed Crop and Weed Identification in Lettuce Fields for Precision Weeding.
Sensors (Basel). 2020 Jan 14;20(2):455. doi: 10.3390/s20020455.
6
Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images.
PLoS One. 2013 Oct 11;8(10):e77151. doi: 10.1371/journal.pone.0077151. eCollection 2013.
8
Parametric image alignment using enhanced correlation coefficient maximization.
IEEE Trans Pattern Anal Mach Intell. 2008 Oct;30(10):1858-65. doi: 10.1109/TPAMI.2008.113.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验