Suppr超能文献

透射断层衍射显微镜的最新进展与当前趋势

Recent Advances and Current Trends in Transmission Tomographic Diffraction Microscopy.

作者信息

Verrier Nicolas, Debailleul Matthieu, Haeberlé Olivier

机构信息

Institut Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS UR UHA 7499), Université de Haute-Alsace, IUT Mulhouse, 61 rue Albert Camus, 68093 Mulhouse, France.

出版信息

Sensors (Basel). 2024 Feb 29;24(5):1594. doi: 10.3390/s24051594.

Abstract

Optical microscopy techniques are among the most used methods in biomedical sample characterization. In their more advanced realization, optical microscopes demonstrate resolution down to the nanometric scale. These methods rely on the use of fluorescent sample labeling in order to break the diffraction limit. However, fluorescent molecules' phototoxicity or photobleaching is not always compatible with the investigated samples. To overcome this limitation, quantitative phase imaging techniques have been proposed. Among these, holographic imaging has demonstrated its ability to image living microscopic samples without staining. However, for a 3D assessment of samples, tomographic acquisitions are needed. Tomographic Diffraction Microscopy (TDM) combines holographic acquisitions with tomographic reconstructions. Relying on a 3D synthetic aperture process, TDM allows for 3D quantitative measurements of the complex refractive index of the investigated sample. Since its initial proposition by Emil Wolf in 1969, the concept of TDM has found a lot of applications and has become one of the hot topics in biomedical imaging. This review focuses on recent achievements in TDM development. Current trends and perspectives of the technique are also discussed.

摘要

光学显微镜技术是生物医学样本表征中最常用的方法之一。在其更先进的实现中,光学显微镜展示出了低至纳米尺度的分辨率。这些方法依靠使用荧光样本标记来突破衍射极限。然而,荧光分子的光毒性或光漂白并不总是与所研究的样本兼容。为了克服这一限制,人们提出了定量相成像技术。其中,全息成像已证明其能够对未染色的活体微观样本进行成像。然而,对于样本的三维评估,需要进行断层扫描采集。断层衍射显微镜(TDM)将全息采集与断层重建相结合。依靠三维合成孔径过程,TDM允许对所研究样本的复折射率进行三维定量测量。自1969年埃米尔·沃尔夫首次提出TDM概念以来,该概念已得到广泛应用,并成为生物医学成像中的热门话题之一。本综述重点关注TDM发展的最新成果。还讨论了该技术的当前趋势和前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a74/10934239/737f63251042/sensors-24-01594-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验