Suppr超能文献

用于偏瘫中风患者准确动作分类的数据增强技术

Data Augmentation Techniques for Accurate Action Classification in Stroke Patients with Hemiparesis.

作者信息

Oh Youngmin

机构信息

School of Computing, Gachon University, Seongnam 13120, Republic of Korea.

出版信息

Sensors (Basel). 2024 Mar 1;24(5):1618. doi: 10.3390/s24051618.

Abstract

Stroke survivors with hemiparesis require extensive home-based rehabilitation. Deep learning-based classifiers can detect actions and provide feedback based on patient data; however, this is difficult owing to data sparsity and heterogeneity. In this study, we investigate data augmentation and model training strategies to address this problem. Three transformations are tested with varying data volumes to analyze the changes in the classification performance of individual data. Moreover, the impact of transfer learning relative to a pre-trained one-dimensional convolutional neural network (Conv1D) and training with an advanced InceptionTime model are estimated with data augmentation. In Conv1D, the joint training data of non-disabled (ND) participants and double rotationally augmented data of stroke patients is observed to outperform the baseline in terms of F1-score (60.9% vs. 47.3%). Transfer learning pre-trained with ND data exhibits 60.3% accuracy, whereas joint training with InceptionTime exhibits 67.2% accuracy under the same conditions. Our results indicate that rotational augmentation is more effective for individual data with initially lower performance and subset data with smaller numbers of participants than other techniques, suggesting that joint training on rotationally augmented ND and stroke data enhances classification performance, particularly in cases with sparse data and lower initial performance.

摘要

偏瘫中风幸存者需要广泛的家庭康复治疗。基于深度学习的分类器可以检测动作并根据患者数据提供反馈;然而,由于数据稀疏性和异质性,这很难实现。在本研究中,我们研究了数据增强和模型训练策略以解决此问题。我们用不同的数据量测试了三种变换,以分析单个数据分类性能的变化。此外,通过数据增强评估了迁移学习相对于预训练的一维卷积神经网络(Conv1D)以及使用先进的InceptionTime模型进行训练的影响。在Conv1D中,观察到非残疾(ND)参与者的联合训练数据和中风患者的双旋转增强数据在F1分数方面优于基线(60.9%对47.3%)。用ND数据进行预训练的迁移学习准确率为60.3%,而在相同条件下,与InceptionTime进行联合训练的准确率为67.2%。我们的结果表明,对于初始性能较低的单个数据和参与者数量较少的子集数据,旋转增强比其他技术更有效,这表明对旋转增强的ND和中风数据进行联合训练可提高分类性能,特别是在数据稀疏和初始性能较低的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c709/10934967/294bfe5d88e3/sensors-24-01618-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验