基于磁共振成像扩散加权成像放射组学特征的机器学习在鼻咽癌预后预测中的应用

Machine Learning Based on MRI DWI Radiomics Features for Prognostic Prediction in Nasopharyngeal Carcinoma.

作者信息

Hu Qiyi, Wang Guojie, Song Xiaoyi, Wan Jingjing, Li Man, Zhang Fan, Chen Qingling, Cao Xiaoling, Li Shaolin, Wang Ying

机构信息

Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519099, China.

Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519099, China.

出版信息

Cancers (Basel). 2022 Jun 30;14(13):3201. doi: 10.3390/cancers14133201.

Abstract

PURPOSE

This study aimed to explore the predictive efficacy of radiomics analyses based on readout-segmented echo-planar diffusion-weighted imaging (RESOLVE-DWI) for prognosis evaluation in nasopharyngeal carcinoma in order to provide further information for clinical decision making and intervention.

METHODS

A total of 154 patients with untreated NPC confirmed by pathological examination were enrolled, and the pretreatment magnetic resonance image (MRI)-including diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) maps, T2-weighted imaging (T2WI), and contrast-enhanced T1-weighted imaging (CE-T1WI)-was collected. The Random Forest (RF) algorithm selected radiomics features and established the machine-learning models. Five models, namely model 1 (DWI + ADC), model 2 (T2WI + CE-T1WI), model 3 (DWI + ADC + T2WI), model 4 (DWI + ADC + CE-T1WI), and model 5 (DWI + ADC + T2WI + CE-T1WI), were constructed. The average area under the curve (AUC) of the validation set was determined in order to compare the predictive efficacy for prognosis evaluation.

RESULTS

After adjusting the parameters, the RF machine learning models based on extracted imaging features from different sequence combinations were obtained. The invalidation sets of model 1 (DWI + ADC) yielded the highest average AUC of 0.80 (95% CI: 0.79-0.81). The average AUCs of the model 2, 3, 4, and 5 invalidation sets were 0.72 (95% CI: 0.71-0.74), 0.66 (95% CI: 0.64-0.68), 0.74 (95% CI: 0.73-0.75), and 0.75 (95% CI: 0.74-0.76), respectively.

CONCLUSION

A radiomics model derived from the MRI DWI of patients with nasopharyngeal carcinoma was generated in order to evaluate the risk of recurrence and metastasis. The model based on MRI DWI can provide an alternative approach for survival estimation, and can reveal more information for clinical decision-making and intervention.

摘要

目的

本研究旨在探讨基于读出分割回波平面扩散加权成像(RESOLVE-DWI)的放射组学分析对鼻咽癌预后评估的预测效能,以便为临床决策和干预提供更多信息。

方法

纳入154例经病理检查确诊的未经治疗的鼻咽癌患者,收集其治疗前的磁共振成像(MRI),包括扩散加权成像(DWI)、表观扩散系数(ADC)图、T2加权成像(T2WI)和对比增强T1加权成像(CE-T1WI)。采用随机森林(RF)算法选择放射组学特征并建立机器学习模型。构建了5个模型,即模型1(DWI+ADC)、模型2(T2WI+CE-T1WI)、模型3(DWI+ADC+T2WI)、模型4(DWI+ADC+CE-T1WI)和模型5(DWI+ADC+T2WI+CE-T1WI)。通过确定验证集的平均曲线下面积(AUC)来比较各模型对预后评估的预测效能。

结果

调整参数后,获得了基于不同序列组合提取的影像特征的RF机器学习模型。模型1(DWI+ADC)的验证集平均AUC最高,为0.80(95%CI:0.79-0.81)。模型2、3、4和5验证集的平均AUC分别为0.72(95%CI:0.71-0.74)、0.66(95%CI:0.64-0.68)、0.74(95%CI:0.73-0.75)和0.75(95%CI:0.74-0.76)。

结论

建立了基于鼻咽癌患者MRI DWI的放射组学模型以评估复发和转移风险。基于MRI DWI的模型可为生存估计提供一种替代方法,并能为临床决策和干预揭示更多信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4777/9264891/74ab335c93e1/cancers-14-03201-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索