Suppr超能文献

质量控制对自闭症患者皮质形态测量比较的影响。

The impact of quality control on cortical morphometry comparisons in autism.

作者信息

Bedford Saashi A, Ortiz-Rosa Alfredo, Schabdach Jenna M, Costantino Manuela, Tullo Stephanie, Piercy Tom, Lai Meng-Chuan, Lombardo Michael V, Di Martino Adriana, Devenyi Gabriel A, Chakravarty M Mallar, Alexander-Bloch Aaron F, Seidlitz Jakob, Baron-Cohen Simon, Bethlehem Richard A I

机构信息

Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.

Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, United States.

出版信息

Imaging Neurosci (Camb). 2023 Oct 6;1:1-21. doi: 10.1162/imag_a_00022. eCollection 2023 Oct 1.

Abstract

Structural magnetic resonance imaging (MRI) quality is known to impact and bias neuroanatomical estimates and downstream analysis, including case-control comparisons, and a growing body of work has demonstrated the importance of careful quality control (QC) and evaluated the impact of image and image-processing quality. However, the growing size of typical neuroimaging datasets presents an additional challenge to QC, which is typically extremely time and labour intensive. One of the most important aspects of MRI quality is the accuracy of processed outputs, which have been shown to impact estimated neurodevelopmental trajectories. Here, we evaluate whether the quality of surface reconstructions by FreeSurfer (one of the most widely used MRI processing pipelines) interacts with clinical and demographic factors. We present a tool, FSQC, that enables quick and efficient yet thorough assessment of outputs of the FreeSurfer processing pipeline. We validate our method against other existing QC metrics, including the automated FreeSurfer Euler number, two other manual ratings of raw image quality, and two popular automated QC methods. We show strikingly similar spatial patterns in the relationship between each QC measure and cortical thickness; relationships for cortical volume and surface area are largely consistent across metrics, though with some notable differences. We next demonstrate that thresholding by QC score attenuates but does not eliminate the impact of quality on cortical estimates. Finally, we explore different ways of controlling for quality when examining differences between autistic individuals and neurotypical controls in the Autism Brain Imaging Data Exchange (ABIDE) dataset, demonstrating that inadequate control for quality can alter results of case-control comparisons.

摘要

已知结构磁共振成像(MRI)质量会影响并偏向神经解剖学估计及下游分析,包括病例对照比较,并且越来越多的研究工作已经证明了仔细的质量控制(QC)的重要性,并评估了图像及图像处理质量的影响。然而,典型神经影像数据集规模的不断扩大给质量控制带来了额外挑战,质量控制通常极其耗时且费力。MRI质量最重要的方面之一是处理后输出的准确性,已证明其会影响估计的神经发育轨迹。在此,我们评估FreeSurfer(最广泛使用的MRI处理流程之一)的表面重建质量是否与临床和人口统计学因素相互作用。我们展示了一种工具FSQC,它能够对FreeSurfer处理流程的输出进行快速、高效且全面的评估。我们将我们的方法与其他现有的质量控制指标进行了验证,包括自动的FreeSurfer欧拉数、另外两种对原始图像质量的人工评级以及两种流行的自动质量控制方法。我们在每个质量控制指标与皮质厚度之间的关系中展示出惊人相似的空间模式;皮质体积和表面积的关系在各指标间基本一致,不过也存在一些显著差异。接下来我们证明,按质量控制分数进行阈值处理会减弱但不会消除质量对皮质估计的影响。最后,我们在自闭症脑成像数据交换(ABIDE)数据集中研究自闭症个体与神经典型对照之间的差异时,探索了控制质量的不同方法,结果表明对质量控制不足会改变病例对照比较的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a08b/10938341/0e6d953f71df/imag_a_00022_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验