Suppr超能文献

结合实验低温电子显微镜密度数据和分子动力学模拟,使用深度学习技术对蛋白质动力学进行定量分析。

Quantitative analysis of protein dynamics using a deep learning technique combined with experimental cryo-EM density data and MD simulations.

作者信息

Matsumoto Shigeyuki, Ishida Shoichi, Terayama Kei, Okuno Yasuhshi

机构信息

Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.

Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan.

出版信息

Biophys Physicobiol. 2023 May 16;20(2):e200022. doi: 10.2142/biophysico.bppb-v20.0022. eCollection 2023.

Abstract

Protein functions associated with biological activity are precisely regulated by both tertiary structure and dynamic behavior. Thus, elucidating the high-resolution structures and quantitative information on in-solution dynamics is essential for understanding the molecular mechanisms. The main experimental approaches for determining tertiary structures include nuclear magnetic resonance (NMR), X-ray crystallography, and cryogenic electron microscopy (cryo-EM). Among these procedures, recent remarkable advances in the hardware and analytical techniques of cryo-EM have increasingly determined novel atomic structures of macromolecules, especially those with large molecular weights and complex assemblies. In addition to these experimental approaches, deep learning techniques, such as AlphaFold 2, accurately predict structures from amino acid sequences, accelerating structural biology research. Meanwhile, the quantitative analyses of the protein dynamics are conducted using experimental approaches, such as NMR and hydrogen-deuterium mass spectrometry, and computational approaches, such as molecular dynamics (MD) simulations. Although these procedures can quantitatively explore dynamic behavior at high resolution, the fundamental difficulties, such as signal crowding and high computational cost, greatly hinder their application to large and complex biological macromolecules. In recent years, machine learning techniques, especially deep learning techniques, have been actively applied to structural data to identify features that are difficult for humans to recognize from big data. Here, we review our approach to accurately estimate dynamic properties associated with local fluctuations from three-dimensional cryo-EM density data using a deep learning technique combined with MD simulations.

摘要

与生物活性相关的蛋白质功能受到三级结构和动态行为的精确调控。因此,阐明溶液中动力学的高分辨率结构和定量信息对于理解分子机制至关重要。确定三级结构的主要实验方法包括核磁共振(NMR)、X射线晶体学和低温电子显微镜(cryo-EM)。在这些方法中,cryo-EM硬件和分析技术最近取得的显著进展越来越多地确定了大分子的新型原子结构,尤其是那些具有大分子量和复杂组装的结构。除了这些实验方法,深度学习技术,如AlphaFold 2,能够从氨基酸序列准确预测结构,加速了结构生物学研究。同时,蛋白质动力学的定量分析使用实验方法(如NMR和氢氘质谱)和计算方法(如分子动力学(MD)模拟)进行。尽管这些方法能够在高分辨率下定量探索动态行为,但诸如信号拥挤和高计算成本等基本困难极大地阻碍了它们在大型和复杂生物大分子中的应用。近年来,机器学习技术,尤其是深度学习技术,已被积极应用于结构数据,以从大数据中识别人类难以识别的特征。在此,我们回顾了我们使用深度学习技术结合MD模拟从三维cryo-EM密度数据准确估计与局部波动相关的动态特性的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b75f/10941960/77fb59d5692c/20_e200022-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验