Suppr超能文献

用于提高结构性心脏病检测性能的去噪扩散模型。

Denoising diffusion model for increased performance of detecting structural heart disease.

作者信息

Streiffer Christopher D, Levin Michael G, Witschey Walter R, Anyanwu Emeka C

机构信息

Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104.

Dvision of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104.

出版信息

medRxiv. 2024 Nov 22:2024.11.21.24317662. doi: 10.1101/2024.11.21.24317662.

Abstract

Recent advancements in generative artificial intelligence have shown promise in producing realistic images from complex data distributions. We developed a denoising diffusion probabilistic model trained on the CheXchoNet dataset, encoding the joint distribution of demographic data and echocardiogram measurements. We generated a synthetic dataset skewed towards younger patients with a higher prevalence of structural left ventricle disease. A diagnostic deep learning model trained on the synthetic dataset performed comparably to one trained on real data producing an AUROC=0.75(95%CI 0.72-0.77), with similar performance on an internal dataset. Combining real data with positive samples from the synthetic data improved diagnostic accuracy producing an AUROC=0.80(95%CI 0.78-0.82). Subgroup analysis showed the largest performance improvement across younger patients. These results suggest diffusion models can increase diagnostic accuracy and fine-tune models for specific populations.

摘要

生成式人工智能的最新进展显示出从复杂数据分布中生成逼真图像的前景。我们开发了一种在CheXchoNet数据集上训练的去噪扩散概率模型,对人口统计数据和超声心动图测量的联合分布进行编码。我们生成了一个偏向年轻患者的合成数据集,这些患者左心室结构疾病的患病率更高。在合成数据集上训练的诊断深度学习模型的表现与在真实数据上训练的模型相当,AUROC=0.75(95%CI 0.72-0.77),在内部数据集上的表现相似。将真实数据与合成数据中的阳性样本相结合提高了诊断准确性,AUROC=0.80(95%CI 0.78-0.82)。亚组分析显示,年轻患者的表现改善最为显著。这些结果表明,扩散模型可以提高诊断准确性,并针对特定人群对模型进行微调。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1af/11601717/9e5fdc6ea01d/nihpp-2024.11.21.24317662v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验