Suppr超能文献

基于机器学习评估()(林奈,1762年)控制对预测诱蚊产卵器中蚊卵时空分布的效果。

Assessing the effect of () (Linnaeus, 1762) control based on machine learning for predicting the spatiotemporal distribution of eggs in ovitraps.

作者信息

Piovezan Rafael, de Azevedo Thiago Salomão, Faria Euler, Veroneze Rosana, Von Zuben Claudio José, Von Zuben Fernando José, Sallum Maria Anice Mureb

机构信息

Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Epidemiologia, São Paulo, SP, Brazil.

Universidade Estadual Paulista, Departamento de Zoologia, Rio Claro, SP, Brazil.

出版信息

Dialogues Health. 2022 Feb 9;1:100003. doi: 10.1016/j.dialog.2022.100003. eCollection 2022 Dec.

Abstract

BACKGROUND

is the dominant vector of several arboviruses that threaten urban populations in tropical and subtropical countries. Because of the climate changes and the spread of the disease worldwide, the population at risk of acquiring the disease is increasing.

METHODS

This study investigated the impact of the larval habitats control (CC), nebulization (NEB), and both methods (CC + NEB) using the distribution of Ae. aegypti eggs collected in urban area of Santa Bárbara d'Oeste, São Paulo State, Brazil. A total of 142,469 eggs were collected from 2014 to 2017. To verify the effects of control interventions, a spatial trend, and a predictive machine learning modeling analytical approaches were adopted.

RESULTS

The spatial analysis revealed sites with the highest probability of Ae. aegypti occurrence and the machine learning generated an asymmetric histogram for predicting the presence of the mosquito. Results of analyses showed that CC, NEB, and CC + NEB control methods had a negative impact on the number of eggs collected in ovitraps, with effects on the distribution of eggs in the three weeks following the treatments, according to the predictive machine learning modeling.

CONCLUSIONS

The vector control interventions are essential to decrease both occurrence of the mosquito vectors and urban arboviruses. The inference processes proposed in this study revealed the relative causal impact of distinct mosquito control interventions. The spatio-temporal and the machine learning analysis are relevant and Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation robust analytical approach to be employed in surveillance and monitoring the results of public health programs focused on combating urban arboviruses.

摘要

背景

是几种虫媒病毒的主要传播媒介,这些病毒威胁着热带和亚热带国家的城市人口。由于气候变化和该疾病在全球的传播,面临感染该疾病风险的人口正在增加。

方法

本研究利用在巴西圣保罗州圣巴巴拉杜埃斯特市区收集的埃及伊蚊卵的分布情况,调查了幼虫栖息地控制(CC)、喷雾(NEB)以及两种方法结合(CC + NEB)的影响。2014年至2017年共收集了142,469枚卵。为验证控制干预措施的效果,采用了空间趋势分析和预测性机器学习建模分析方法。

结果

空间分析揭示了埃及伊蚊出现概率最高的地点,机器学习生成了一个不对称直方图用于预测蚊子的存在。分析结果表明,根据预测性机器学习建模,CC、NEB和CC + NEB控制方法对诱卵器中收集到的卵的数量有负面影响,且对处理后三周内卵的分布有影响。

结论

病媒控制干预措施对于减少蚊虫病媒和城市虫媒病毒的发生至关重要。本研究提出的推理过程揭示了不同蚊虫控制干预措施的相对因果影响。时空分析和机器学习分析是相关且强大的分析方法,可用于监测和评估以防治城市虫媒病毒为重点的公共卫生项目的结果。 由Aries Systems Corporation的Editorial Manager®和ProduXion Manager®提供支持

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aab8/10954012/6d00f060af48/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验