Yang Kai, Willke Philip, Bae Yujeong, Ferrón Alejandro, Lado Jose L, Ardavan Arzhang, Fernández-Rossier Joaquín, Heinrich Andreas J, Lutz Christopher P
IBM Almaden Research Center, San Jose, CA, USA.
Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea.
Nat Nanotechnol. 2018 Dec;13(12):1120-1125. doi: 10.1038/s41565-018-0296-7. Epub 2018 Nov 5.
Nuclear spins serve as sensitive probes in chemistry and materials science and are promising candidates for quantum information processing. NMR, the resonant control of nuclear spins, is a powerful tool for probing local magnetic environments in condensed matter systems, which range from magnetic ordering in high-temperature superconductors and spin liquids to quantum magnetism in nanomagnets. Increasing the sensitivity of NMR to the single-atom scale is challenging as it requires a strong polarization of nuclear spins, well in excess of the low polarizations obtained at thermal equilibrium, as well as driving and detecting them individually. Strong nuclear spin polarization, known as hyperpolarization, can be achieved through hyperfine coupling with electron spins. The fundamental mechanism is the conservation of angular momentum: an electron spin flips and a nuclear spin flops. The nuclear hyperpolarization enables applications such as in vivo magnetic resonance imaging using nanoparticles, and is harnessed for spin-based quantum information processing in quantum dots and doped silicon. Here we polarize the nuclear spins of individual copper atoms on a surface using a spin-polarized current in a scanning tunnelling microscope. By employing the electron-nuclear flip-flop hyperfine interaction, the spin angular momentum is transferred from tunnelling electrons to the nucleus of individual Cu atoms. The direction and magnitude of the nuclear polarization is controlled by the direction and amplitude of the current. The nuclear polarization permits the detection of the NMR of individual Cu atoms, which is used to sense the local magnetic environment of the Cu electron spin.
核自旋在化学和材料科学中是灵敏的探针,也是量子信息处理的有潜力的候选者。核磁共振(NMR),即对核自旋的共振控制,是探测凝聚态物质系统中局部磁环境的有力工具,这些系统涵盖从高温超导体中的磁有序和自旋液体到纳米磁体中的量子磁性。将NMR的灵敏度提高到单原子尺度具有挑战性,因为这需要核自旋的强极化,远超过热平衡时获得的低极化,以及单独驱动和检测它们。通过与电子自旋的超精细耦合可以实现称为超极化的强核自旋极化。基本机制是角动量守恒:一个电子自旋翻转,一个核自旋反转。核超极化使得诸如使用纳米颗粒的体内磁共振成像等应用成为可能,并且被用于量子点和掺杂硅中基于自旋的量子信息处理。在这里,我们使用扫描隧道显微镜中的自旋极化电流使表面上单个铜原子的核自旋极化。通过利用电子 - 核反转超精细相互作用,自旋角动量从隧穿电子转移到单个铜原子的原子核。核极化的方向和大小由电流的方向和幅度控制。核极化允许检测单个铜原子的NMR,其用于感知铜电子自旋的局部磁环境。